The Cauchy problem is considered for the massive Dirac equation in the non-extreme Keff-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L-loc(infinity) at least at the rate t(-5/6). For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
机构:
Tokyo Womans Christian Univ, Coll Arts & Sci, Suginami Ku, Zenpukuji 2-6-1, Tokyo 1678585, JapanTokyo Womans Christian Univ, Coll Arts & Sci, Suginami Ku, Zenpukuji 2-6-1, Tokyo 1678585, Japan
机构:
Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech RepublicCharles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech Republic
Scholtz, M.
Flandera, A.
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech RepublicCharles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech Republic
Flandera, A.
Guerlebeck, Norman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bremen, ZARM, D-28359 Bremen, Germany
DLR Inst Space Syst, Linzer Str 1, D-28359 Bremen, GermanyCharles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech Republic