Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry

被引:33
|
作者
Finster, F
Kamran, N
Smoller, J
Yau, ST
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200200648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Cauchy problem is considered for the massive Dirac equation in the non-extreme Keff-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L-loc(infinity) at least at the rate t(-5/6). For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
引用
收藏
页码:201 / 244
页数:44
相关论文
共 50 条
  • [11] Charged particles' tunnelling from the Kerr-Newman black hole
    Zhang, Jingyi
    Zhao, Zheng
    PHYSICS LETTERS B, 2006, 638 (2-3) : 110 - 113
  • [12] Massive vector particles tunneling from Kerr and Kerr-Newman black holes
    Li, Xiang-Qian
    Chen, Ge-Rui
    PHYSICS LETTERS B, 2015, 751 : 34 - 38
  • [13] Entropy in the Kerr-Newman black hole
    Ho, J
    Kim, WT
    Park, YJ
    Shin, H
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (09) : 2617 - 2625
  • [14] Entropy in the Kerr-Newman black hole
    Ho, J.
    Kim, W. T.
    Park, Y.-J.
    Shin, H.
    Classical and Quantum Gravity, 14 (09):
  • [15] Kerr-Newman black hole lensing of relativistic massive particles in the weak-field limit
    He, Guansheng
    Lin, Wenbin
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [16] Massive vector fields in Kerr-Newman and Kerr-Sen black hole spacetimes
    Cayuso, Ramiro
    Dias, Oscar J. C.
    Gray, Finnian
    Kubiznak, David
    Margalit, Aoibheann
    Santos, Jorge E.
    Souza, Renato Gomes
    Thiele, Leander
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (04)
  • [17] From schwarzschild black hole to Kerr-Newman black hole
    Liu, WB
    Li, X
    ACTA PHYSICA SINICA, 1999, 48 (10) : 1793 - 1799
  • [18] Phase transitions and thermodynamic geometry of a Kerr-Newman black hole in a cavity
    Huang, Yuchen
    Tao, Jun
    Wang, Peng
    Ying, Shuxuan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [19] From Schwarzschild black hole to Kerr-Newman black hole
    Liu, Wen-Biao
    Li, Xiang
    Wuli Xuebao/Acta Physica Sinica, 1999, 48 (10): : 1798 - 1799
  • [20] The Kerr-Newman Black Hole Solution as Strong Gravity for Elementary Particles
    Burinskii, A.
    GRAVITATION & COSMOLOGY, 2020, 26 (02): : 87 - 98