Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry

被引:33
|
作者
Finster, F
Kamran, N
Smoller, J
Yau, ST
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200200648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Cauchy problem is considered for the massive Dirac equation in the non-extreme Keff-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L-loc(infinity) at least at the rate t(-5/6). For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
引用
收藏
页码:201 / 244
页数:44
相关论文
共 50 条
  • [21] Hawking radiation of the Kerr-Newman black hole
    Chen, DeYou
    Yang, ShuZheng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (12) : 3067 - 3071
  • [22] Geodesic motion of neutral particles around a Kerr-Newman black hole
    Liu, Chen-Yu
    Lee, Da-Shin
    Lin, Chi-Yong
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (23)
  • [23] Statistical entropy of Kerr-Newman black hole
    Zhao, Ren
    Zhang, Li-Chun
    Wuli Xuebao/Acta Physica Sinica, 2002, 51 (06): : 1169 - 1170
  • [24] Rindler approximation to Kerr-Newman black hole
    H. A. Camargo
    M. Socolovsky
    The European Physical Journal Plus, 130
  • [25] Spinning Particle as Kerr-Newman "Black Hole"
    Burinskii, A.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 724 - 729
  • [26] Rindler approximation to Kerr-Newman black hole
    Camargo, H. A.
    Socolovsky, M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (11): : 1 - 6
  • [27] Kerr-Newman black hole as spinning particle
    Burinskii, Alexander
    XVIII WORKSHOP ON HIGH ENERGY SPIN PHYSICS, DSPIN-2019, 2020, 1435
  • [28] Statistical entropy of Kerr-Newman black hole
    Zhao, R
    Zhang, LC
    ACTA PHYSICA SINICA, 2002, 51 (06) : 1167 - 1170
  • [29] Quantization of Kerr-Newman Black Hole Entropy
    Guang-Hui Zhao
    Chuan-An Li
    International Journal of Theoretical Physics, 2017, 56 : 2450 - 2457
  • [30] Entropy correction to Kerr-Newman black hole
    Zeng Xiao-Xiong
    ACTA PHYSICA SINICA, 2010, 59 (01) : 92 - 96