Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry

被引:33
|
作者
Finster, F
Kamran, N
Smoller, J
Yau, ST
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200200648
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Cauchy problem is considered for the massive Dirac equation in the non-extreme Keff-Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L-loc(infinity) at least at the rate t(-5/6). For generic initial data, this rate of decay is sharp. We derive a formula for the probability p that the Dirac particle escapes to infinity. For various conditions on the initial data, we show that p = 0, 1 or 0 < p < The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
引用
收藏
页码:201 / 244
页数:44
相关论文
共 50 条
  • [1] Decay Rates and Probability Estimates¶for Massive Dirac Particles¶in the Kerr–Newman Black Hole Geometry
    F. Finster
    N. Kamran
    J. Smoller
    S.-T. Yau
    Communications in Mathematical Physics, 2002, 230 : 201 - 244
  • [2] The Long-Time Dynamics of Dirac Particles in the Kerr-Newman Black Hole Geometry
    Finster, Felix
    Kamran, Niky
    Smoller, Joel
    Yau, Shing-Tung
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 7 (01) : 25 - 52
  • [3] The massive Dirac equation in the Kerr-Newman-de Sitter and Kerr-Newman black hole spacetimes
    Kraniotis, G., V
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (03):
  • [4] Dirac quasinormal frequencies of the Kerr-Newman black hole
    Jing, JL
    Pan, QY
    NUCLEAR PHYSICS B, 2005, 728 (1-3) : 109 - 120
  • [5] Entropy of the Dirac field in a Kerr-Newman black hole
    Liu, WB
    Zhao, Z
    PHYSICAL REVIEW D, 2000, 61 (06)
  • [6] Hawking radiation of charged Dirac particles from a Kerr-Newman black hole
    Zhou, Shiwei
    Liu, Wenbiao
    PHYSICAL REVIEW D, 2008, 77 (10):
  • [7] Gravitational deflection of light and massive particles by a moving Kerr-Newman black hole
    He, Guansheng
    Lin, Wenbin
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (09)
  • [8] SURFACE GEOMETRY OF A KERR-NEWMAN BLACK-HOLE
    KRORI, KD
    BARUA, M
    PHYSICAL REVIEW D, 1987, 35 (04): : 1171 - 1175
  • [9] Kerr-Newman Jacobi geometry and the deflection of charged massive particles
    Li, Zonghai
    Jia, Junji
    arXiv, 2021,
  • [10] COMPLEX KERR-NEWMAN GEOMETRY AND BLACK-HOLE THERMODYNAMICS
    BROWN, JD
    MARTINEZ, EA
    YORK, JW
    PHYSICAL REVIEW LETTERS, 1991, 66 (18) : 2281 - 2284