Nonconvex image reconstruction via expectation propagation

被引:3
|
作者
Muntoni, Anna Paola [1 ,2 ,3 ]
Hernandez Rojas, Rafael Diaz [4 ]
Braunstein, Alfredo [1 ,5 ,6 ,7 ]
Pagnani, Andrea [1 ,5 ,6 ]
Castillo, Isaac Perez [8 ,9 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol DISAT, Corso Duca Abruzzi 24, Turin, Italy
[2] Univ Paris, Lab Phys Ecole Normale Super, Univ PSL, CNRS,Sorbonne Univ,ENS, F-75005 Paris, France
[3] Sorbonne Univ, CNRS, Inst Biol Paris Seine, Lab Computat & Quantitat Biol, F-75005 Paris, France
[4] Sapienza Univ Rome, Dipartimento Fis, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Italian Inst Genom Med Form HuGeF, SP142 Km 3-95, I-10060 Candiolo, Italy
[6] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[7] Coll Carlo Alberto, Piazza Vincenzo Arbarello 8, I-10122 Turin, Italy
[8] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Cuant & Foton, POB 20-364, Mexico City 01000, DF, Mexico
[9] London Math Lab, 8 Margravine Gardens, London W6 8RH, England
基金
欧盟地平线“2020”;
关键词
VIEWS;
D O I
10.1103/PhysRevE.100.032134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of efficiently reconstructing tomographic images can be mapped into a Bayesian inference problem over the space of pixels densities. Solutions to this problem are given by pixels assignments that are compatible with tomographic measurements and maximize a posterior probability density. This maximization can be performed with standard local optimization tools when the log-posterior is a convex function, but it is generally intractable when introducing realistic nonconcave priors that reflect typical images features such as smoothness or sharpness. We introduce a new method to reconstruct images obtained from Radon projections by using expectation propagation, which allows us to approximate the intractable posterior. We show, by means of extensive simulations, that, compared to state-of-the-art algorithms for this task, expectation propagation paired with very simple but non-log-concave priors is often able to reconstruct images up to a smaller error while using a lower amount of information per pixel. We provide estimates for the critical rate of information per pixel above which recovery is error-free by means of simulations on ensembles of phantom and real images.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Image Inpainting Via Isophotes Propagation
    Benzarti, Faouzi
    Amiri, Hamid
    2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT), 2012, : 359 - 364
  • [42] Vehicle image classification via expectation-maximization algorithm
    Pumrin, S
    Dailey, DJ
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II: COMMUNICATIONS-MULTIMEDIA SYSTEMS & APPLICATIONS, 2003, : 468 - 471
  • [43] Image segmentation via multiresolution diffused expectation-maximisation
    Boccignone, G
    Caggiano, V
    Napoletano, P
    Ferraro, M
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 193 - 196
  • [44] Fast Scalable Image Restoration Using Total Variation Priors and Expectation Propagation
    Yao, Dan
    McLaughlin, Stephen
    Altmann, Yoann
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5762 - 5773
  • [45] SIMULTANEOUS CARTOON AND TEXTURE FOR NONCONVEX IMAGE IN PAINTING VIA THE BALANCED APPROACH
    Wu, Yu-Lian
    Feng, Xiang-Chu
    Luo, Liang
    2013 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2013, : 270 - 275
  • [46] Image Source Separation of Low Rank Matrix Via Nonconvex Function
    Lee, Jieun
    Choe, Yoonsik
    2015 INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS: TECHNIQUES AND APPLICATIONS (EETA 2015), 2015, : 285 - 291
  • [47] Accelerating the ordered subsets expectation maximization image reconstruction method via a practical fast line search: Phantom evaluation.
    Liu, YH
    Sinusas, AJ
    Gagnon, D
    Zacek, G
    Wackers, FJT
    JOURNAL OF NUCLEAR MEDICINE, 1997, 38 (05) : 206 - 206
  • [48] Image Reconstruction via Compressed Sensing
    Shahriar, Raghib
    Mowri, Nawshin Jahan
    Kadir, Mohammad Ismat
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [49] IMAGE COMPRESSION VIA SPARSE RECONSTRUCTION
    Yuan, Yuan
    Au, Oscar C.
    Zheng, Amin
    Yang, Haitao
    Tang, Ketan
    Sun, Wenxiu
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [50] EMRECON: An Expectation Maximization Based Image Reconstruction Framework for Emission Tomography Data
    Koesters, Thomas
    Schaefers, Klaus P.
    Wuebbeling, Frank
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 4365 - 4368