Fast Scalable Image Restoration Using Total Variation Priors and Expectation Propagation

被引:3
|
作者
Yao, Dan [1 ]
McLaughlin, Stephen [1 ]
Altmann, Yoann [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Image restoration; Bayes methods; TV; Uncertainty; Image edge detection; Estimation; Noise reduction; Variational inference; image restoration; expectation propagation (EP); expectation maximization (EM); hyperparameter estimation; INVERSE PROBLEMS; MONTE-CARLO; FRAMEWORK;
D O I
10.1109/TIP.2022.3202092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a scalable approximate Bayesian method for image restoration using Total Variation (TV) priors, with the ability to offer uncertainty quantification. In contrast to most optimization methods based on maximum a posteriori estimation, we use the Expectation Propagation (EP) framework to approximate minimum mean squared error (MMSE) estimates and marginal (pixel-wise) variances, without resorting to Monte Carlo sampling. For the classical anisotropic TV-based prior, we also propose an iterative scheme to automatically adjust the regularization parameter via Expectation Maximization (EM). Using Gaussian approximating densities with diagonal covariance matrices, the resulting method allows highly parallelizable steps and can scale to large images for denoising, deconvolution, and compressive sensing (CS) problems. The simulation results illustrate that such EP methods can provide a posteriori estimates on par with those obtained via sampling methods but at a fraction of the computational cost. Moreover, EP does not exhibit strong underestimation of posteriori variances, in contrast to variational Bayes alternatives.
引用
收藏
页码:5762 / 5773
页数:12
相关论文
共 50 条
  • [1] Total Variation Restoration of the Defocus Image Based on Spectral Priors
    Liu, Peng
    Liu, Dingsheng
    Liu, Zhiwen
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [2] Variational Bayesian Image Restoration With a Product of Spatially Weighted Total Variation Image Priors
    Chantas, Giannis
    Galatsanos, Nikolaos P.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (02) : 351 - 362
  • [3] A FAST TOTAL VARIATION MINIMIZATION METHOD FOR IMAGE RESTORATION
    Huang, Yumei
    Ng, Michael K.
    Wen, You-Wei
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 774 - 795
  • [4] Patch-Based Image Restoration Using Expectation Propagation
    Yao, Dan
    McLaughlin, Stephen
    Altmann, Yoann
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (01): : 192 - 227
  • [5] FAST TOTAL VARIATION IMAGE RESTORATION WITH PARAMETER ESTIMATION USING BAYESIAN INFERENCE
    Amizic, Bruno
    Babacan, S. Derin
    Ng, Michael K.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 770 - 773
  • [6] A Fast Adaptive Parameter Estimation for Total Variation Image Restoration
    He, Chuan
    Hu, Changhua
    Zhang, Wei
    Shi, Biao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (12) : 4954 - 4967
  • [7] Image Restoration using Autoencoding Priors
    Bigdeli, Siavash Arjomand
    Zwicker, Matthias
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 33 - 44
  • [8] A fast higher degree total variation minimization method for image restoration
    Liu, Pengfei
    Xiao, Liang
    Zhang, Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (08) : 1383 - 1404
  • [9] Total variation algorithm with depth image priors for image colorization
    Zhang X.
    Jin Z.
    Jiang Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (02): : 385 - 393
  • [10] IMAGE RESTORATION USING TOTAL VARIATION REGULARIZED DEEP IMAGE PRIOR
    Liu, Jiaming
    Sun, Yu
    Xu, Xiaojian
    Kamilov, Ulugbek S.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7715 - 7719