Fast Scalable Image Restoration Using Total Variation Priors and Expectation Propagation

被引:3
|
作者
Yao, Dan [1 ]
McLaughlin, Stephen [1 ]
Altmann, Yoann [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Image restoration; Bayes methods; TV; Uncertainty; Image edge detection; Estimation; Noise reduction; Variational inference; image restoration; expectation propagation (EP); expectation maximization (EM); hyperparameter estimation; INVERSE PROBLEMS; MONTE-CARLO; FRAMEWORK;
D O I
10.1109/TIP.2022.3202092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a scalable approximate Bayesian method for image restoration using Total Variation (TV) priors, with the ability to offer uncertainty quantification. In contrast to most optimization methods based on maximum a posteriori estimation, we use the Expectation Propagation (EP) framework to approximate minimum mean squared error (MMSE) estimates and marginal (pixel-wise) variances, without resorting to Monte Carlo sampling. For the classical anisotropic TV-based prior, we also propose an iterative scheme to automatically adjust the regularization parameter via Expectation Maximization (EM). Using Gaussian approximating densities with diagonal covariance matrices, the resulting method allows highly parallelizable steps and can scale to large images for denoising, deconvolution, and compressive sensing (CS) problems. The simulation results illustrate that such EP methods can provide a posteriori estimates on par with those obtained via sampling methods but at a fraction of the computational cost. Moreover, EP does not exhibit strong underestimation of posteriori variances, in contrast to variational Bayes alternatives.
引用
收藏
页码:5762 / 5773
页数:12
相关论文
共 50 条
  • [21] Image Regularization with Total Variation and Optimized Morphological Gradient Priors
    Oohara, Shoya
    Muneyasu, Mitsuji
    Yoshida, Soh
    Nakashizuka, Makoto
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (12) : 1920 - 1924
  • [22] Compressive total variation for image reconstruction and restoration
    Li, Peng
    Chen, Wengu
    Ng, Michael K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 874 - 893
  • [23] Image restoration subject to a total variation constraint
    Combettes, PL
    Pesquet, JC
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) : 1213 - 1222
  • [24] A NOVEL ITERATIVE IMAGE RESTORATION ALGORITHM USING NONSTATIONARY IMAGE PRIORS
    Vera, Esteban
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [25] Poisson noisy image restoration via overlapping group sparse and nonconvex second-order total variation priors
    Jon, Kyongson
    Liu, Jun
    Lv, Xiaoguang
    Zhu, Wensheng
    PLOS ONE, 2021, 16 (04):
  • [26] Hyperspectral Image Restoration Using Adaptive Anisotropy Total Variation and Nuclear Norms
    Hu, Ting
    Li, Wei
    Liu, Na
    Tao, Ran
    Zhang, Feng
    Scheunders, Paul
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1516 - 1533
  • [27] Image Decomposition Using Deep Variation Priors System
    Jamila Harbi, S.
    Najm, Zeyad Nabeel
    Nonlinear Optics Quantum Optics, 2022, 56 (3-4): : 193 - 204
  • [28] Image Decomposition Using Deep Variation Priors System
    Harbi, Jamila S.
    Najm, Zeyad Nabeel
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2022, 56 (3-4): : 193 - 204
  • [29] IMAGE RESTORATION: TOTAL VARIATION, WAVELET FRAMES, AND BEYOND
    Cai, Jian-Feng
    Dong, Bin
    Osher, Stanley
    Shen, Zuowei
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (04) : 1033 - 1089
  • [30] DIRECTIONAL DECOMPOSITION BASED TOTAL VARIATION IMAGE RESTORATION
    Pipa, Daniel R.
    Chan, Stanley H.
    Nguyen, Truong Q.
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1558 - 1562