Fast Scalable Image Restoration Using Total Variation Priors and Expectation Propagation

被引:3
|
作者
Yao, Dan [1 ]
McLaughlin, Stephen [1 ]
Altmann, Yoann [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Image restoration; Bayes methods; TV; Uncertainty; Image edge detection; Estimation; Noise reduction; Variational inference; image restoration; expectation propagation (EP); expectation maximization (EM); hyperparameter estimation; INVERSE PROBLEMS; MONTE-CARLO; FRAMEWORK;
D O I
10.1109/TIP.2022.3202092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a scalable approximate Bayesian method for image restoration using Total Variation (TV) priors, with the ability to offer uncertainty quantification. In contrast to most optimization methods based on maximum a posteriori estimation, we use the Expectation Propagation (EP) framework to approximate minimum mean squared error (MMSE) estimates and marginal (pixel-wise) variances, without resorting to Monte Carlo sampling. For the classical anisotropic TV-based prior, we also propose an iterative scheme to automatically adjust the regularization parameter via Expectation Maximization (EM). Using Gaussian approximating densities with diagonal covariance matrices, the resulting method allows highly parallelizable steps and can scale to large images for denoising, deconvolution, and compressive sensing (CS) problems. The simulation results illustrate that such EP methods can provide a posteriori estimates on par with those obtained via sampling methods but at a fraction of the computational cost. Moreover, EP does not exhibit strong underestimation of posteriori variances, in contrast to variational Bayes alternatives.
引用
收藏
页码:5762 / 5773
页数:12
相关论文
共 50 条
  • [31] Adapting total generalized variation for blind image restoration
    Wen-Ze Shao
    Feng Wang
    Li-Li Huang
    Multidimensional Systems and Signal Processing, 2019, 30 : 857 - 883
  • [32] Image restoration via DOST and total variation regularisation
    Bini, A. A.
    IET IMAGE PROCESSING, 2019, 13 (03) : 458 - 468
  • [33] Total Variation for Image Restoration with Smooth Area Protection
    Chuangxin Wang
    Zhongyun Liu
    Journal of Signal Processing Systems, 2010, 61 : 271 - 277
  • [34] A TOTAL VARIATION DISCONTINUOUS GALERKIN APPROACH FOR IMAGE RESTORATION
    Stamm, Benjamin
    Wihler, Thomas P.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (01) : 81 - 93
  • [35] HOMOTOPY CURVE TRACKING FOR TOTAL VARIATION IMAGE RESTORATION
    Yang, Fenlin
    Chen, Ke
    Yu, Bo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (02) : 177 - 196
  • [36] Total Variation for Image Restoration with Smooth Area Protection
    Wang, Chuangxin
    Liu, Zhongyun
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2010, 61 (03): : 271 - 277
  • [37] Convergence bound in total variation for an image restoration model
    Jovanovski, Oliver
    STATISTICS & PROBABILITY LETTERS, 2014, 90 : 11 - 16
  • [38] Weighted and extended total variation for image restoration and decomposition
    El Hamidi, A.
    Menard, M.
    Lugiez, M.
    Ghannam, C.
    PATTERN RECOGNITION, 2010, 43 (04) : 1564 - 1576
  • [39] A computational algorithm for minimizing total variation in image restoration
    Li, YY
    Santosa, F
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (06) : 987 - 995
  • [40] POSITIVELY CONSTRAINED TOTAL VARIATION PENALIZED IMAGE RESTORATION
    Chan, Raymond H.
    Liang, Hai-Xia
    Ma, Jun
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (1-2) : 187 - 201