Nonconvex image reconstruction via expectation propagation

被引:3
|
作者
Muntoni, Anna Paola [1 ,2 ,3 ]
Hernandez Rojas, Rafael Diaz [4 ]
Braunstein, Alfredo [1 ,5 ,6 ,7 ]
Pagnani, Andrea [1 ,5 ,6 ]
Castillo, Isaac Perez [8 ,9 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol DISAT, Corso Duca Abruzzi 24, Turin, Italy
[2] Univ Paris, Lab Phys Ecole Normale Super, Univ PSL, CNRS,Sorbonne Univ,ENS, F-75005 Paris, France
[3] Sorbonne Univ, CNRS, Inst Biol Paris Seine, Lab Computat & Quantitat Biol, F-75005 Paris, France
[4] Sapienza Univ Rome, Dipartimento Fis, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Italian Inst Genom Med Form HuGeF, SP142 Km 3-95, I-10060 Candiolo, Italy
[6] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
[7] Coll Carlo Alberto, Piazza Vincenzo Arbarello 8, I-10122 Turin, Italy
[8] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Cuant & Foton, POB 20-364, Mexico City 01000, DF, Mexico
[9] London Math Lab, 8 Margravine Gardens, London W6 8RH, England
基金
欧盟地平线“2020”;
关键词
VIEWS;
D O I
10.1103/PhysRevE.100.032134
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of efficiently reconstructing tomographic images can be mapped into a Bayesian inference problem over the space of pixels densities. Solutions to this problem are given by pixels assignments that are compatible with tomographic measurements and maximize a posterior probability density. This maximization can be performed with standard local optimization tools when the log-posterior is a convex function, but it is generally intractable when introducing realistic nonconcave priors that reflect typical images features such as smoothness or sharpness. We introduce a new method to reconstruct images obtained from Radon projections by using expectation propagation, which allows us to approximate the intractable posterior. We show, by means of extensive simulations, that, compared to state-of-the-art algorithms for this task, expectation propagation paired with very simple but non-log-concave priors is often able to reconstruct images up to a smaller error while using a lower amount of information per pixel. We provide estimates for the critical rate of information per pixel above which recovery is error-free by means of simulations on ensembles of phantom and real images.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] NONCONVEX CONTOUR RECONSTRUCTION
    ALEVIZOS, P
    BOISSONNAT, JD
    YVINEC, M
    JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (3-4) : 225 - 252
  • [32] Propagation phasor approach for holographic image reconstruction
    Wei Luo
    Yibo Zhang
    Zoltán Göröcs
    Alborz Feizi
    Aydogan Ozcan
    Scientific Reports, 6
  • [33] Morphological Image Reconstruction Using Directional Propagation
    Sung, Jung-Min
    Lee, Chang-Ha
    Ha, Yeong-Ho
    Choi, Bong-Yeol
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2015, 59 (05)
  • [34] Propagation phasor approach for holographic image reconstruction
    Luo, Wei
    Zhang, Yibo
    Goeroecs, Zoltan
    Feizi, Alborz
    Ozcan, Aydogan
    SCIENTIFIC REPORTS, 2016, 6
  • [35] CT image reconstruction by back-propagation
    Nakao, Z
    Ali, FEF
    Chen, YW
    FIRST INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, PROCEEDINGS 1997 - KES '97, VOLS 1 AND 2, 1997, : 323 - 326
  • [36] GENERAL CONVERGENT EXPECTATION MAXIMIZATION (EM)-TYPE ALGORITHMS FOR IMAGE RECONSTRUCTION
    Yan, Ming
    Bui, Alex A. T.
    Cong, Jason
    Vese, Luminita A.
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 1007 - 1029
  • [37] Unsupervised Feature Selection for Proportional Data Clustering via Expectation Propagation
    Fan, Wentao
    Bouguila, Nizar
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [38] Low Complexity Receiver for Uplink SCMA System via Expectation Propagation
    Meng, Xiangming
    Wu, Yiqun
    Chen, Yan
    Cheng, Meng
    2017 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2017,
  • [39] Stochastic Expectation Propagation
    Li, Yingzhen
    Hernandez-Lobato, Jose Miguel
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [40] Conditional Expectation Propagation
    Wang, Zheng
    Zhe, Shandian
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 28 - 37