Conditional Generative Adversarial Networks for Inorganic Chemical Compositions

被引:1
|
作者
Sawada, Yoshihide [1 ]
Morikawa, Koji [1 ]
Fujii, Mikiya [2 ]
机构
[1] Panasonic Corp, Innovat Promot Sect, Technol Div, Panasonic Lab Tokyo,Chuo Ku, Shiodome Hamarikyu Bldg,8-21-1 Ginza, Tokyo 1040061, Japan
[2] Panasonic Corp, Innovat Promot Sect, Technol Div, 1006 Kadoma, Kadoma, Osaka 5718508, Japan
关键词
Deep generative model; Materials discovery; Inverse material design;
D O I
10.1246/cl.200673
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, inverse material design using machine learning techniques has attracted attention for material development. Almost all studies have used crystal structures of materials, although material engineers rarely store the crystal information and they only save chemical compositions and target properties for high-throughput materials discovery. Thus, we propose a method to generate chemical compositions for desired target properties by using conditional generative adversarial networks (CondGAN) and a post-processing method to balance the oxidation numbers. Numerical experimental results demonstrate that our CondGAN generates chemical compositions holding the desired properties.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 50 条
  • [41] Conditional generative adversarial networks for individualized causal mediation analysis
    Huan, Cheng
    Sun, Rongqian
    Song, Xinyuan
    JOURNAL OF CAUSAL INFERENCE, 2024, 12 (01)
  • [42] Dual Projection Generative Adversarial Networks for Conditional Image Generation
    Han, Ligong
    Min, Martin Renqiang
    Stathopoulos, Anastasis
    Tian, Yu
    Gao, Ruijiang
    Kadav, Asim
    Metaxas, Dimitris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14418 - 14427
  • [43] Crossfire Conditional Generative Adversarial Networks for Singing Voice Extraction
    Yuan, Weitao
    Wang, Shengbei
    Li, Xiangrui
    Unoki, Masashi
    Wang, Wenwu
    INTERSPEECH 2021, 2021, : 3041 - 3045
  • [44] Interpreting CNN predictions using conditional Generative Adversarial Networks
    Guna, R. T. Akash
    Sikha, O. K.
    Benitez, Raul
    KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [45] Evaluating different generator networks of a conditional generative adversarial network
    Fetty, L.
    Kuess, P.
    Nesvacil, N.
    Nyholm, T.
    Georg, D.
    Furtado, H.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S555 - S555
  • [46] Gait generation of human based on the conditional generative adversarial networks
    Wu X.
    Deng W.
    Niu X.
    Jia Z.
    Liu S.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (01): : 129 - 137
  • [47] Facial Expression Transfer Based on Conditional Generative Adversarial Networks
    Fan, Yang
    Jiang, Xingguo
    Lan, Shuxing
    Lan, Jianghai
    IEEE ACCESS, 2023, 11 : 82276 - 82283
  • [48] Sector Complexity Evaluation Based on Conditional Generative Adversarial Networks
    Zhang W.-N.
    Hu M.-H.
    Du J.-H.
    Yin J.-N.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (06): : 226 - 233and288
  • [49] Improving Conditional Sequence Generative Adversarial Networks by Stepwise Evaluation
    Tuan, Yi-Lin
    Lee, Hung-Yi
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (04) : 788 - 798
  • [50] Generative Adversarial Networks Based on Penalty of Conditional Entropy Distance
    Tan H.-W.
    Wang G.-D.
    Zhou L.-Y.
    Zhang Z.-L.
    Zhang, Zi-Li (zhangzl@swu.edu.cn), 1600, Chinese Academy of Sciences (32): : 1116 - 1128