Conditional Generative Adversarial Networks for Inorganic Chemical Compositions

被引:1
|
作者
Sawada, Yoshihide [1 ]
Morikawa, Koji [1 ]
Fujii, Mikiya [2 ]
机构
[1] Panasonic Corp, Innovat Promot Sect, Technol Div, Panasonic Lab Tokyo,Chuo Ku, Shiodome Hamarikyu Bldg,8-21-1 Ginza, Tokyo 1040061, Japan
[2] Panasonic Corp, Innovat Promot Sect, Technol Div, 1006 Kadoma, Kadoma, Osaka 5718508, Japan
关键词
Deep generative model; Materials discovery; Inverse material design;
D O I
10.1246/cl.200673
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, inverse material design using machine learning techniques has attracted attention for material development. Almost all studies have used crystal structures of materials, although material engineers rarely store the crystal information and they only save chemical compositions and target properties for high-throughput materials discovery. Thus, we propose a method to generate chemical compositions for desired target properties by using conditional generative adversarial networks (CondGAN) and a post-processing method to balance the oxidation numbers. Numerical experimental results demonstrate that our CondGAN generates chemical compositions holding the desired properties.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 50 条
  • [31] Conditional Generative Adversarial Networks for Commonsense Machine Comprehension
    Wang, Bingning
    Liu, Kang
    Zhao, Jun
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4123 - 4129
  • [32] Probabilistic Biomass Estimation with Conditional Generative Adversarial Networks
    Leonhardt, Johannes
    Drees, Lukas
    Jung, Peter
    Roscher, Ribana
    PATTERN RECOGNITION, DAGM GCPR 2022, 2022, 13485 : 479 - 494
  • [33] Face Depth Estimation With Conditional Generative Adversarial Networks
    Arslan, Abdullah Taha
    Seke, Erol
    IEEE ACCESS, 2019, 7 : 23222 - 23231
  • [34] Phase Retrieval Using Conditional Generative Adversarial Networks
    Uelwer, Tobias
    Oberstrass, Alexander
    Harmeling, Stefan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 731 - 738
  • [35] Procedural Generation of Roads with Conditional Generative Adversarial Networks
    Kelvin, Lin Ziwen
    Bhojan, Anand
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2020), 2020, : 277 - 281
  • [36] Conditional Generative Adversarial Networks for Domain Transfer: A Survey
    Zhou, Guoqiang
    Fan, Yi
    Shi, Jiachen
    Lu, Yuyuan
    Shen, Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [37] Generation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Nepomuceno-Chamorro, Isabel
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) : 252 - 262
  • [38] MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
    Kumar, Kundan
    Kumar, Rithesh
    de Boissiere, Thibault
    Gestin, Lucas
    Teoh, Wei Zhen
    Sotelo, Jose
    de Brebisson, Alexandre
    Bengio, Yoshua
    Courville, Aaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Enhanced dataset synthesis using conditional generative adversarial networks
    Mert, Ahmet
    BIOMEDICAL ENGINEERING LETTERS, 2023, 13 (01) : 41 - 48
  • [40] Conditional Generative Adversarial Networks for Speed Control in Trajectory Simulation
    Julka, Sahib
    Sowrirajan, Vishal
    Schloetterer, Joerg
    Granitzer, Michael
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 436 - 450