Conditional Generative Adversarial Networks for Inorganic Chemical Compositions

被引:1
|
作者
Sawada, Yoshihide [1 ]
Morikawa, Koji [1 ]
Fujii, Mikiya [2 ]
机构
[1] Panasonic Corp, Innovat Promot Sect, Technol Div, Panasonic Lab Tokyo,Chuo Ku, Shiodome Hamarikyu Bldg,8-21-1 Ginza, Tokyo 1040061, Japan
[2] Panasonic Corp, Innovat Promot Sect, Technol Div, 1006 Kadoma, Kadoma, Osaka 5718508, Japan
关键词
Deep generative model; Materials discovery; Inverse material design;
D O I
10.1246/cl.200673
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, inverse material design using machine learning techniques has attracted attention for material development. Almost all studies have used crystal structures of materials, although material engineers rarely store the crystal information and they only save chemical compositions and target properties for high-throughput materials discovery. Thus, we propose a method to generate chemical compositions for desired target properties by using conditional generative adversarial networks (CondGAN) and a post-processing method to balance the oxidation numbers. Numerical experimental results demonstrate that our CondGAN generates chemical compositions holding the desired properties.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 50 条
  • [21] Ultrasonic imaging using conditional generative adversarial networks
    Molinier, Nathan
    Painchaud-April, Guillaume
    Le Duff, Alain
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2023, 133
  • [22] Quantum State Tomography with Conditional Generative Adversarial Networks
    Ahmed, Shahnawaz
    Sanchez Munoz, Carlos
    Nori, Franco
    Kockum, Anton Frisk
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [23] CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS FOR ACOUSTIC ECHO CANCELLATION
    Pastor-Naranjo, Fran
    del Amor, Rocio
    Silva-Rodriguez, Julio
    Ferrer, Miguel
    Pinero, Gema
    Naranjo, Valery
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 85 - 89
  • [24] A framework for personalized recommendation with conditional generative adversarial networks
    Jing Wen
    Xi-Ran Zhu
    Chang-Dong Wang
    Zhihong Tian
    Knowledge and Information Systems, 2022, 64 : 2637 - 2660
  • [25] Interpolating Seismic Data With Conditional Generative Adversarial Networks
    Oliveira, Dario A. B.
    Ferreira, Rodrigo S.
    Silva, Reinaldo
    Brazil, Emilio Vital
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1952 - 1956
  • [26] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,
  • [27] Double generative adversarial networks for conditional independence testing
    Shi, Chengchun
    Xu, Tianlin
    Bergsma, Wicher
    Li, Lexin
    Journal of Machine Learning Research, 2021, 22
  • [28] A framework for personalized recommendation with conditional generative adversarial networks
    Wen, Jing
    Zhu, Xi-Ran
    Wang, Chang-Dong
    Tian, Zhihong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (10) : 2637 - 2660
  • [29] Conditional Generative Adversarial Networks for Optimal Path Planning
    Ma, Nachuan
    Wang, Jiankun
    Liu, Jianbang
    Meng, Max Q-H
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (02) : 662 - 671
  • [30] Creation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Riquelme, Jose C.
    Nepomuceno-Chamorro, Isabel
    14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019), 2020, 950 : 231 - 240