Multiscale reduction of discrete Korteweg-de Vries equations

被引:0
|
作者
Scimiterna, C. [1 ]
机构
[1] Univ Roma Tre, Dipartimento Fis & Ingn Elettron, I-00146 Rome, Italy
关键词
SCHRODINGER-TYPE EQUATIONS; PDES; INTEGRABILITY;
D O I
10.1088/1751-8113/42/45/454018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how through a multiscale reduction technique, performing the analysis at orders beyond the nonlinear Schrodinger equation, one can effectively prove if some nonlinear partial difference equation is not integrable. The example is carried out on a symmetric discretization of the KdV equation and is compared to a similar reduction performed on the integrable lattice potential KdV equation.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Lie Symmetry Reduction on Korteweg-De Vries-Burgers and Short Pulse Equations
    Hong, Joseph Boon Zik
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [42] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [43] Integrability and solutions of a nonsymmetric discrete Korteweg-de Vries equation
    Mesfun, Maebel
    Zhang, Da-jun
    Zhao, Song-lin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (02)
  • [44] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [45] Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane
    Bona, Jerry L.
    Sun, S. M.
    Zhang, Bing-Yu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06): : 1145 - 1185
  • [46] Discrete Negative Order Potential Korteweg-de Vries Equation
    Zhao, Song-lin
    Sun, Ying-ying
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (12): : 1151 - 1158
  • [47] Reduction of dispersionless coupled Korteweg-de Vries equations to the Euler-Darboux equation
    Matsuno, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (04) : 1744 - 1760
  • [48] Travelling waves for two coupled Korteweg-de Vries equations
    Barrera, F. P.
    Brugarino, T.
    ADVANCES IN FLUID MECHANICS VII, 2008, 59 : 477 - 480
  • [49] An operator valued extension of the super Korteweg-de Vries equations
    Andrea, S
    Restuccia, A
    Sotomayor, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) : 2625 - 2634
  • [50] Weighted identities for solutions of generalized Korteweg-de Vries equations
    S. I. Pokhozhaev
    Mathematical Notes, 2011, 89 : 382 - 396