We show how through a multiscale reduction technique, performing the analysis at orders beyond the nonlinear Schrodinger equation, one can effectively prove if some nonlinear partial difference equation is not integrable. The example is carried out on a symmetric discretization of the KdV equation and is compared to a similar reduction performed on the integrable lattice potential KdV equation.
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
Sahadevan, R.
Balakrishnan, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, IndiaUniv Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
机构:
Department of Mathematics, Shanghai University
Newtouch Center for Mathematics of Shanghai UniversityDepartment of Mathematics, Shanghai University
Da-jun Zhang
Song-lin Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Department of Applied Mathematics, Zhejiang University of TechnologyDepartment of Mathematics, Shanghai University
机构:
Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Sez Matemat, Rome, ItalyUniv Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Sez Matemat, Rome, Italy
Carillo, Sandra
Schiebold, Cornelia
论文数: 0引用数: 0
h-index: 0
机构:
Mid Sweden Univ, Dept Nat Sci Engn & Math, S-85170 Sundsvall, SwedenUniv Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Sez Matemat, Rome, Italy