We show how through a multiscale reduction technique, performing the analysis at orders beyond the nonlinear Schrodinger equation, one can effectively prove if some nonlinear partial difference equation is not integrable. The example is carried out on a symmetric discretization of the KdV equation and is compared to a similar reduction performed on the integrable lattice potential KdV equation.
机构:
Univ Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
Inst Univ France, Paris, FranceUniv Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
Klein, Christian
Saut, Jean-Claude
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, FranceUniv Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
Saut, Jean-Claude
Wang, Yuexun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
Lanzhou Univ, Sch Math & Stat, Lanzhou 370000, Peoples R ChinaUniv Bourgogne, Inst Math Bourgogne, 9 Ave Alain Savary, F-21078 Dijon, France
机构:
Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USAFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Qiao, Zhijun
Fan, Engui
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R ChinaFudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China