Multiscale reduction of discrete Korteweg-de Vries equations

被引:0
|
作者
Scimiterna, C. [1 ]
机构
[1] Univ Roma Tre, Dipartimento Fis & Ingn Elettron, I-00146 Rome, Italy
关键词
SCHRODINGER-TYPE EQUATIONS; PDES; INTEGRABILITY;
D O I
10.1088/1751-8113/42/45/454018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how through a multiscale reduction technique, performing the analysis at orders beyond the nonlinear Schrodinger equation, one can effectively prove if some nonlinear partial difference equation is not integrable. The example is carried out on a symmetric discretization of the KdV equation and is compared to a similar reduction performed on the integrable lattice potential KdV equation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [2] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [3] THE DISCRETE KORTEWEG-DE VRIES EQUATION
    NIJHOFF, F
    CAPEL, H
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 133 - 158
  • [4] Soliton Solutions to Generalized Discrete Korteweg-de Vries Equations
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (09) : 1658 - 1668
  • [5] Soliton solutions to generalized discrete Korteweg-de Vries equations
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 1658 - 1668
  • [6] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [7] EXPLICIT SOLUTIONS TO A HIERARCHY OF DISCRETE COUPLING KORTEWEG-DE VRIES EQUATIONS
    Zhao, Qiulan
    Zhong, Yadong
    Li, Xinyue
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (04): : 1353 - 1370
  • [8] Numerical dynamics for discrete nonlinear damping Korteweg-de Vries equations
    Liu, Guifen
    Li, Yangrong
    Wang, Fengling
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 332 - 349
  • [9] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [10] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77