Transport properties of a two-dimensional ''chiral'' persistent random walk

被引:18
|
作者
Larralde, M
机构
[1] Instituto de Fisica, Laboratoria de Cuernavaca, Cuernavaca, Morelos
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 05期
关键词
D O I
10.1103/PhysRevE.56.5004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The usual two-dimensional persistent random walk is generalized by introducing a clockwise (or counterclockwise) angular bias at each new step direction. This bias breaks the reflection symmetry of the problem, giving the walker a tendency to ''loop,'' and gives rise to unusual transport properties. In particular, there is a resonantlike enhancement of the diffusion constant as the parameters of the system are changed. Also, in response to an external field, the looping tendency can resist or enhance the drift along the field and gives rise to a drift transverse to the field. These results are obtained analytically, and, for completeness, compared with Monte Carlo simulations of the walk.
引用
收藏
页码:5004 / 5008
页数:5
相关论文
共 50 条
  • [21] Exit probability of two-dimensional random walk from the quadrant
    Shimura, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1999, 75 (03) : 39 - 42
  • [22] Bounding a random environment for two-dimensional edge-reinforced random walk
    Merkl, Franz
    Rolles, Silke W. W.
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 530 - 565
  • [23] Transport properties of diazonium functionalized graphene: chiral two-dimensional hole gases
    Huang, Ping
    Jing, Long
    Zhu, Hua Rui
    Gao, Xue Yun
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (23)
  • [24] Chiral properties in a two-dimensional chiral polaritonic photonic crystal
    He, Cheng
    Lu, Ming-Hui
    Yin, Ruo-Cheng
    Fan, Tian
    Chen, Yan-Feng
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [25] A MONTE-CARLO STUDY OF A RANDOM-WALK ON A TWO-DIMENSIONAL RANDOM NETWORK
    JOHN, TM
    ANANTHAKRISHNA, G
    PHYSICS LETTERS A, 1985, 110 (7-8) : 411 - 414
  • [26] RECURRENCE OF EDGE-REINFORCED RANDOM WALK ON A TWO-DIMENSIONAL GRAPH
    Merkl, Franz
    Rolles, Silke W. W.
    ANNALS OF PROBABILITY, 2009, 37 (05): : 1679 - 1714
  • [27] Product-form characterization for a two-dimensional reflecting random walk
    Guy Latouche
    Masakiyo Miyazawa
    Queueing Systems, 2014, 77 : 373 - 391
  • [28] A LIMIT-THEOREM FOR TWO-DIMENSIONAL CONDITIONED RANDOM-WALK
    SHIMURA, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 45 - 45
  • [29] On a class of additive functionals of two-dimensional Brownian motion and random walk
    Csáki, E
    Csörgö, M
    Földes, A
    Shi, Z
    LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL I, 2002, : 321 - 345