Transport properties of a two-dimensional ''chiral'' persistent random walk

被引:18
|
作者
Larralde, M
机构
[1] Instituto de Fisica, Laboratoria de Cuernavaca, Cuernavaca, Morelos
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 05期
关键词
D O I
10.1103/PhysRevE.56.5004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The usual two-dimensional persistent random walk is generalized by introducing a clockwise (or counterclockwise) angular bias at each new step direction. This bias breaks the reflection symmetry of the problem, giving the walker a tendency to ''loop,'' and gives rise to unusual transport properties. In particular, there is a resonantlike enhancement of the diffusion constant as the parameters of the system are changed. Also, in response to an external field, the looping tendency can resist or enhance the drift along the field and gives rise to a drift transverse to the field. These results are obtained analytically, and, for completeness, compared with Monte Carlo simulations of the walk.
引用
收藏
页码:5004 / 5008
页数:5
相关论文
共 50 条
  • [41] Distribution of the area enclosed by a two-dimensional random walk in a disordered medium
    Samokhin, K.V.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (3 pt A):
  • [42] A LIMIT-THEOREM FOR TWO-DIMENSIONAL CONDITIONED RANDOM-WALK
    SHIMURA, M
    NAGOYA MATHEMATICAL JOURNAL, 1984, 95 (SEP) : 105 - 116
  • [43] Magnetic field line random walk in two-dimensional dynamical turbulence
    Wang, J. F.
    Qin, G.
    Ma, Q. M.
    Song, T.
    Yuan, S. B.
    PHYSICS OF PLASMAS, 2017, 24 (08)
  • [44] Critical conductance of the chiral two-dimensional random flux model
    Schweitzer, Ludwig
    Markos, Peter
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1335 - 1337
  • [45] Genome as a two-dimensional walk
    Larionov, SA
    Loskutov, AY
    Ryadchenko, EV
    DOKLADY PHYSICS, 2005, 50 (12) : 634 - 638
  • [46] Genome as a two-dimensional walk
    S. A. Larionov
    A. Yu. Loskutov
    E. V. Ryadchenko
    Doklady Physics, 2005, 50 : 634 - 638
  • [47] TWO-DIMENSIONAL DISCRETE PROPERTIES OF RANDOM SURFACES
    WHITEHOUSE, DJ
    PHILLIPS, MJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 305 (1490): : 441 - 468
  • [48] Edge-state-enhanced transport in a two-dimensional quantum walk
    Asboth, Janos K.
    Edge, Jonathan M.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [49] The one-dimensional asymmetric persistent random walk
    Rossetto, Vincent
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [50] Transport properties of a two-dimensional electron gas due to a spatially random magnetic field
    Rushforth, AW
    Gallagher, BL
    Main, PC
    Neumann, AC
    Marrows, CH
    Zoller, I
    Howson, MA
    Hickey, BJ
    Henini, M
    PHYSICA E, 2000, 6 (1-4): : 751 - 754