Bounding a random environment for two-dimensional edge-reinforced random walk

被引:6
|
作者
Merkl, Franz [1 ]
Rolles, Silke W. W. [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
来源
关键词
reinforced random walk; random environment;
D O I
10.1214/EJP.v13-495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider edge-reinforced random walk on the infinite two-dimensional lattice. The process has the same distribution as a random walk in a certain strongly dependent random environment, which can be described by random weights on the edges. In this paper, we show some decay properties of these random weights. Using these estimates, we derive bounds for some hitting probabilities of the edge-reinforced random walk.
引用
收藏
页码:530 / 565
页数:36
相关论文
共 50 条
  • [1] RECURRENCE OF EDGE-REINFORCED RANDOM WALK ON A TWO-DIMENSIONAL GRAPH
    Merkl, Franz
    Rolles, Silke W. W.
    ANNALS OF PROBABILITY, 2009, 37 (05): : 1679 - 1714
  • [2] Transience of Edge-Reinforced Random Walk
    Disertori, Margherita
    Sabot, Christophe
    Tarres, Pierre
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 121 - 148
  • [3] Edge-reinforced random walk on a ladder
    Merkl, F
    Rolles, SWW
    ANNALS OF PROBABILITY, 2005, 33 (06): : 2051 - 2093
  • [4] Transience of Edge-Reinforced Random Walk
    Margherita Disertori
    Christophe Sabot
    Pierre Tarrès
    Communications in Mathematical Physics, 2015, 339 : 121 - 148
  • [5] On the recurrence of edge-reinforced random walk on ℤ×G
    Silke W.W. Rolles
    Probability Theory and Related Fields, 2006, 135 : 216 - 264
  • [6] Once edge-reinforced random walk on a tree
    Durrett, R
    Kesten, H
    Limic, V
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 567 - 592
  • [7] CORRELATION INEQUALITIES FOR EDGE-REINFORCED RANDOM WALK
    Merkl, Franz
    Rolles, Silke W. W.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 753 - 763
  • [8] Once edge-reinforced random walk on a tree
    Rick Durrett
    Harry Kesten
    Vlada Limic
    Probability Theory and Related Fields, 2002, 122 : 567 - 592
  • [9] Edge-reinforced random walk on one-dimensional periodic graphs
    Franz Merkl
    Silke W. W. Rolles
    Probability Theory and Related Fields, 2009, 145 : 323 - 349
  • [10] Edge-reinforced random walk on one-dimensional periodic graphs
    Merkl, Franz
    Rolles, Silke W. W.
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) : 323 - 349