Bounding a random environment for two-dimensional edge-reinforced random walk

被引:6
|
作者
Merkl, Franz [1 ]
Rolles, Silke W. W. [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Munich, Germany
来源
关键词
reinforced random walk; random environment;
D O I
10.1214/EJP.v13-495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider edge-reinforced random walk on the infinite two-dimensional lattice. The process has the same distribution as a random walk in a certain strongly dependent random environment, which can be described by random weights on the edges. In this paper, we show some decay properties of these random weights. Using these estimates, we derive bounds for some hitting probabilities of the edge-reinforced random walk.
引用
收藏
页码:530 / 565
页数:36
相关论文
共 50 条
  • [31] A NON-WIENER RANDOM-WALK IN A TWO-DIMENSIONAL BERNOULLI ENVIRONMENT
    KRAMLI, A
    LUKACS, P
    SZASZ, D
    JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (3-4) : 599 - 609
  • [32] Topology of the support of the two-dimensional lattice random walk
    Caser, S
    Hilhorst, HJ
    PHYSICAL REVIEW LETTERS, 1996, 77 (06) : 992 - 995
  • [33] Wind direction and strength as a two-dimensional random walk
    Schulz, BM
    Schulz, M
    Trimper, S
    PHYSICS LETTERS A, 2001, 291 (2-3) : 87 - 91
  • [34] On the excursions of two-dimensional random walk and Wiener process
    Csáki, E
    Földes, A
    Révész, P
    Shi, Z
    RANDOM WALKS, 1999, 9 : 43 - 58
  • [35] CATALYTIC BRANCHING RANDOM WALK ON A TWO-DIMENSIONAL LATTICE
    Bulinskaya, E. Vl
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (01) : 120 - U248
  • [36] Phase transitions for edge-reinforced random walks on the half-line
    Akahori, Jiro
    Collevecchio, Andrea
    Takei, Masato
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [37] A MONTE-CARLO STUDY OF A RANDOM-WALK ON A TWO-DIMENSIONAL RANDOM NETWORK
    JOHN, TM
    ANANTHAKRISHNA, G
    PHYSICS LETTERS A, 1985, 110 (7-8) : 411 - 414
  • [38] THE HAUSDORFF DIMENSION OF THE TWO-DIMENSIONAL EDWARDS RANDOM-WALK
    KOUKIOU, F
    PASCHE, J
    PETRITIS, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1385 - 1391
  • [39] Transport properties of a two-dimensional ''chiral'' persistent random walk
    Larralde, M
    PHYSICAL REVIEW E, 1997, 56 (05): : 5004 - 5008
  • [40] Rate of escape of the conditioned two-dimensional simple random walk
    Collin, Orphee
    Popov, Serguei
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 179