Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas

被引:0
|
作者
Bricq, Stephanie [1 ,2 ]
Collet, Christophe [1 ]
Armspach, Jean-Paul [1 ,2 ]
机构
[1] Univ Strasbourg, LSIIT, CNRS, UMR 7005, F-67070 Strasbourg, France
[2] Univ Strasbourg, Inst Phys Biol ULP IPB, CNRS, UMR 7004, Strasbourg, France
来源
2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3 | 2006年
关键词
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we present a new Markovian scheme for MRI segmentation using a priori knowledge obtained from probability maps. Indeed we propose to use both triplet Markov chain and a brain atlas containing prior expectations about the spatial localization of the different tissue classes, to segment the brain in gray matter, white matter and cerebro-spinal fluid in an unsupervised way. Experimental results on real data are included to validate this approach. Comparison with other previously used techniques demonstrates the advantages (robustness, low computational complexity) of this new Markovian segmentation scheme using a probabilistic atlas.
引用
收藏
页码:386 / +
页数:2
相关论文
共 50 条
  • [41] Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants’ Brain
    Hamed Karimi
    Mohammad Hamghalam
    Multimedia Tools and Applications, 2024, 83 : 33511 - 33526
  • [42] A Comparative Study on Voxel Classification Methods for Atlas based Segmentation of Brain Structures from 3D MRI Images
    Galisot, Gaetan
    Brouard, Thierry
    Ramel, Jean-Yves
    Chaillou, Elodie
    VISAPP: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4, 2019, : 341 - 350
  • [43] Atlas of Classifiers for Brain MRI Segmentation
    Kodner, Boris
    Gordon, Shiri
    Goldberger, Jacob
    Raviv, Tammy Riklin
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 36 - 44
  • [44] 3D Segmentation of Brain Tumor MRI Image Based on RAPNet
    Hu M.
    Xiong S.
    Huang H.
    Zhang G.
    Wang C.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (02): : 91 - 97
  • [45] Brain Tumor Synthetic Segmentation in 3D Multimodal MRI Scans
    Hamghalam, Mohammad
    Lei, Baiying
    Wang, Tianfu
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 153 - 162
  • [46] An accurate segmentation method for volumetry of brain tumor in 3D MRI
    Wang, Jiahui
    Li, Qiang
    Hirai, Toshinori
    Katsuragawa, Shigehiko
    Li, Feng
    Doi, Kunio
    MEDICAL IMAGING 2008: IMAGE PROCESSING, PTS 1-3, 2008, 6914
  • [47] Comparison study of clinical 3D MRI brain segmentation evaluation
    Song, T
    Angelini, ED
    Mensh, BD
    Laine, A
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1671 - 1674
  • [48] Distributionally Robust Segmentation of Abnormal Fetal Brain 3D MRI
    Fidon, Lucas
    Aertsen, Michael
    Mufti, Nada
    Deprest, Thomas
    Emam, Doaa
    Guffens, Frederic
    Schwartz, Ernst
    Ebner, Michael
    Prayer, Daniela
    Kasprian, Gregor
    David, Anna L.
    Melbourne, Andrew
    Ourselin, Sebastien
    Deprest, Jan
    Langs, Georg
    Vercauteren, Tom
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 263 - 273
  • [49] Anisotropic Diffusion based Brain MRI Segmentation and 3D Reconstruction
    M. Arfan Jaffar
    Sultan Zia
    Ghaznafar Latif
    Anwar M. Mirza
    Irfan Mehmood
    Naveed Ejaz
    Sung Wook Baik
    International Journal of Computational Intelligence Systems, 2012, 5 : 494 - 504
  • [50] Anisotropic Diffusion based Brain MRI Segmentation and 3D Reconstruction
    Jaffar, M. Arfan
    Zia, Sultan
    Latif, Ghaznafar
    Mirza, Anwar M.
    Mehmood, Irfan
    Ejaz, Naveed
    Baik, Sung Wook
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2012, 5 (03) : 494 - 504