Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas

被引:0
|
作者
Bricq, Stephanie [1 ,2 ]
Collet, Christophe [1 ]
Armspach, Jean-Paul [1 ,2 ]
机构
[1] Univ Strasbourg, LSIIT, CNRS, UMR 7005, F-67070 Strasbourg, France
[2] Univ Strasbourg, Inst Phys Biol ULP IPB, CNRS, UMR 7004, Strasbourg, France
关键词
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we present a new Markovian scheme for MRI segmentation using a priori knowledge obtained from probability maps. Indeed we propose to use both triplet Markov chain and a brain atlas containing prior expectations about the spatial localization of the different tissue classes, to segment the brain in gray matter, white matter and cerebro-spinal fluid in an unsupervised way. Experimental results on real data are included to validate this approach. Comparison with other previously used techniques demonstrates the advantages (robustness, low computational complexity) of this new Markovian segmentation scheme using a probabilistic atlas.
引用
收藏
页码:386 / +
页数:2
相关论文
共 50 条
  • [21] Segmentation of small animal PET/CT mouse brain scans using an MRI-based 3D digital atlas
    Delzescaux, Thierry
    Lebenberg, Jessica
    Raguet, Hugo
    Hantraye, Philippe
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 3097 - 3100
  • [22] Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing
    Rafiei, Shima
    Karimi, Nader
    Mirmahboub, Behzad
    Najarian, Kayvan
    Felfeliyan, Banafsheh
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6310 - 6313
  • [23] MRI image segmentation using multiscale autoregressive model and 3D Markov random fields
    Tardif, PM
    Zaccarin, A
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 1035 - 1046
  • [24] Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei
    Dimitrova, A
    Zeljko, D
    Schwarze, F
    Maschke, M
    Gerwig, M
    Frings, M
    Beck, A
    Aurich, V
    Forsting, M
    Timmann, D
    NEUROIMAGE, 2006, 30 (01) : 12 - 25
  • [25] Julich-Brain: A 3D probabilistic atlas of the human brain's cytoarchitecture
    Amunts, Katrin
    Mohlberg, Hartmut
    Bludau, Sebastian
    Zilles, Karl
    SCIENCE, 2020, 369 (6506) : 988 - +
  • [26] LEVERAGING 3D INFORMATION IN UNSUPERVISED BRAIN MRI SEGMENTATION
    Lambert, Benjamin
    Louis, Maxime
    Doyle, Senan
    Forbes, Florence
    Dojat, Michel
    Tucholka, Alan
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 187 - 190
  • [27] 3D Brain Tissue Selection and Segmentation from MRI
    Uher, Vaclav
    Burget, Radim
    Masek, Jan
    Dutta, Malay Kishore
    2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, : 839 - 842
  • [28] Novel Framework of Segmentation 3D MRI of Brain Tumors
    El-Henawy, Ibrahim Mahmoud
    Elbaz, Mostafa
    Ali, Zainab H.
    Sakr, Noha
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3489 - 3502
  • [29] Bag of Tricks for 3D MRI Brain Tumor Segmentation
    Zhao, Yuan-Xing
    Zhang, Yan-Ming
    Liu, Cheng-Lin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 210 - 220
  • [30] A hybrid method for 3D segmentation of MRI Brain Images
    Zhang, X
    Zhang, DZ
    Tian, JW
    Liu, J
    2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 608 - 611