Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas

被引:0
|
作者
Bricq, Stephanie [1 ,2 ]
Collet, Christophe [1 ]
Armspach, Jean-Paul [1 ,2 ]
机构
[1] Univ Strasbourg, LSIIT, CNRS, UMR 7005, F-67070 Strasbourg, France
[2] Univ Strasbourg, Inst Phys Biol ULP IPB, CNRS, UMR 7004, Strasbourg, France
关键词
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we present a new Markovian scheme for MRI segmentation using a priori knowledge obtained from probability maps. Indeed we propose to use both triplet Markov chain and a brain atlas containing prior expectations about the spatial localization of the different tissue classes, to segment the brain in gray matter, white matter and cerebro-spinal fluid in an unsupervised way. Experimental results on real data are included to validate this approach. Comparison with other previously used techniques demonstrates the advantages (robustness, low computational complexity) of this new Markovian segmentation scheme using a probabilistic atlas.
引用
收藏
页码:386 / +
页数:2
相关论文
共 50 条
  • [31] Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration
    Wang, Chunliang
    Forsberg, Daniel
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING, CSI 2015, 2016, 9402 : 107 - 116
  • [32] DUAL-MODALITY 3D BRAIN PET-CT IMAGE SEGMENTATION BASED ON PROBABILISTIC BRAIN ATLAS AND CLASSIFICATION FUSION
    Xia, Yong
    Eberl, Stefan
    Feng, Dagan
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2557 - 2560
  • [33] Brain Tumour Segmentation on 3D MRI Using Attention V-Net
    Giri, Charul
    Sharma, Jivitesh
    Goodwin, Morten
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 336 - 348
  • [34] Brain MRI Segmentation using efficient 3D Fully Convolutional Neural Networks
    Khan, Ghazala
    Khan, Naimul Mefraz
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2351 - 2356
  • [35] Brain Tumor Segmentation in 3D MRIs Using an Improved Markov Random Field Model
    Yousefi, Sahar
    Azmi, Reza
    Zahedi, Morteza
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2011), 2011, 8285
  • [36] Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model
    Martin, Sebastien
    Troccaz, Jocelyne
    Daanen, Vincent
    MEDICAL PHYSICS, 2010, 37 (04) : 1579 - 1590
  • [37] MULTIVIEW FOREGROUND SEGMENTATION USING 3D PROBABILISTIC MODEL
    Gallego, Jaime
    Pardas, Montse
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3317 - 3321
  • [38] Segmentation propagation using a 3D embryo atlas for high-throughput MRI phenotyping: Comparison and validation with manual segmentation
    Norris, Francesca C.
    Modat, Marc
    Cleary, Jon O.
    Price, Anthony N.
    Mccue, Karen
    Scambler, Peter J.
    Ourselin, Sebastien
    Lythgoe, Mark F.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (03) : 877 - 883
  • [39] Automatic identificaiton of cortical sulci using a 3D probabilistic atlas
    Le Goualher, G
    Collins, DL
    Barillot, C
    Evans, AC
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI'98, 1998, 1496 : 509 - 518
  • [40] Segmentation of 3D MRI Using 2D Convolutional Neural Networks in Infants' Brain
    Karimi, Hamed
    Hamghalam, Mohammad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33511 - 33526