Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas

被引:0
|
作者
Bricq, Stephanie [1 ,2 ]
Collet, Christophe [1 ]
Armspach, Jean-Paul [1 ,2 ]
机构
[1] Univ Strasbourg, LSIIT, CNRS, UMR 7005, F-67070 Strasbourg, France
[2] Univ Strasbourg, Inst Phys Biol ULP IPB, CNRS, UMR 7004, Strasbourg, France
关键词
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we present a new Markovian scheme for MRI segmentation using a priori knowledge obtained from probability maps. Indeed we propose to use both triplet Markov chain and a brain atlas containing prior expectations about the spatial localization of the different tissue classes, to segment the brain in gray matter, white matter and cerebro-spinal fluid in an unsupervised way. Experimental results on real data are included to validate this approach. Comparison with other previously used techniques demonstrates the advantages (robustness, low computational complexity) of this new Markovian segmentation scheme using a probabilistic atlas.
引用
收藏
页码:386 / +
页数:2
相关论文
共 50 条
  • [1] 3D brain MRI segmentation based on robust Hidden Markov Chain
    Bricq, S.
    Collet, Ch.
    Armspach, J-P
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 517 - +
  • [2] Taxonomic Indexes for Automatic Prostate Segmentation on 3D MRI Scans Using Superpixels and Probabilistic Atlas
    Ferreira Franca, Joao Vitor
    Franca da Silva, Giovanni Lucca
    Cutrim dos Santos, Pedro Thiago
    Braz Junior, Geraldo
    Silva, Aristofanes Correa
    Araujo de Cavalcanti, Elton Anderson
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 27TH EDITION, 2020, : 122 - 127
  • [3] Lesions detection on 3D brain MRI using Trimmmed Likelihood Estimator and probabilistic atlas
    Bricq, S.
    Collet, Ch.
    Armspach, J. -P
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 93 - +
  • [4] Multi-object segmentation of brain structures in 3D MRI using a computerized atlas
    Ferrant, M
    Cuisenaire, O
    Macq, B
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 986 - 995
  • [5] Hidden Markov models-based 3D MRI brain segmentation
    Ibrahim, M.
    John, N.
    Kabuka, M.
    Younis, A.
    IMAGE AND VISION COMPUTING, 2006, 24 (10) : 1065 - 1079
  • [6] 3D+t Brain MRI Segmentation Using Robust 4D Hidden Markov Chain
    Lavigne, Francois
    Collet, Christophe
    Armspach, Jean-Paul
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 4715 - 4718
  • [7] 3D MRI segmentation of brain structures
    Verard, L
    Fadili, J
    Ruan, S
    Bloyet, D
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 1081 - 1082
  • [8] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [9] Triplet Markov Chain in Images Segmentation
    Ameur, Meryem
    Idrissi, Najlae
    Daoui, Cherki
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [10] 3D VISUALIZATION AND SEGMENTATION OF BRAIN MRI DATA
    Levinski, Konstantin
    Sourin, Alexei
    Zagorodnov, Vitali
    GRAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2009, : 111 - +