Nanoscale zero-field electron spin resonance spectroscopy

被引:29
|
作者
Kong, Fei [1 ,2 ,3 ,4 ]
Zhao, Pengju [1 ,2 ,4 ]
Ye, Xiangyu [1 ,2 ,4 ]
Wang, Zhecheng [1 ,2 ,4 ]
Qin, Zhuoyang [1 ,2 ,4 ]
Yu, Pei [1 ,2 ,4 ]
Su, Jihu [1 ,2 ,3 ,4 ]
Shi, Fazhan [1 ,2 ,3 ,4 ]
Du, Jiangfeng [1 ,2 ,3 ,4 ]
机构
[1] USTC, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
[2] USTC, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] USTC, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] USTC, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
中国国家自然科学基金;
关键词
PARAMAGNETIC-RESONANCE; MAGNETIC-RESONANCE; AMBIENT CONDITIONS; DIAMOND; RESOLUTION; DYNAMICS;
D O I
10.1038/s41467-018-03969-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry, and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] TWO-DIMENSIONAL ZERO-FIELD NUTATION NUCLEAR-QUADRUPOLE RESONANCE SPECTROSCOPY
    HARBISON, GS
    SLOKENBERGS, A
    BARBARA, TM
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (10): : 5292 - 5298
  • [42] ZERO-FIELD ELECTRON-PARAMAGNETIC-RES SPECTROSCOPY OF FE(III) IN FERRICHROME-A
    VANDERVEN, NS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (01): : 49 - 50
  • [43] Zero-field spin splitting in AlInN/GaN heterostructures
    Gao, K. H.
    Ma, X. R.
    Zhang, X. H.
    Zhou, W. Z.
    Lin, T.
    PHYSICA B-CONDENSED MATTER, 2020, 595
  • [44] Zero-Field Splitting Parameters of Hemin Investigated by High-Frequency and High-Pressure Electron Paramagnetic Resonance Spectroscopy
    Eiji Ohmichi
    Tsubasa Okamoto
    Takahiro Sakurai
    Hideyuki Takahashi
    Susumu Okubo
    Hitoshi Ohta
    Applied Magnetic Resonance, 2020, 51 : 1103 - 1115
  • [45] Zero-field routing of spin waves in a multiferroic heterostructure
    Zhu, Weijia
    Qin, Huajun
    Flajsman, Lukas
    Taniyama, Tomoyasu
    van Dijken, Sebastiaan
    APPLIED PHYSICS LETTERS, 2022, 120 (11)
  • [46] Observation of resistively detected hole spin resonance and zero-field pseudo-spin splitting in epitaxial graphene
    Mani, Ramesh G.
    Hankinson, John
    Berger, Claire
    de Heer, Walter A.
    NATURE COMMUNICATIONS, 2012, 3
  • [47] Zero-Field Splitting Parameters of Hemin Investigated by High-Frequency and High-Pressure Electron Paramagnetic Resonance Spectroscopy
    Ohmichi, Eiji
    Okamoto, Tsubasa
    Sakurai, Takahiro
    Takahashi, Hideyuki
    Okubo, Susumu
    Ohta, Hitoshi
    APPLIED MAGNETIC RESONANCE, 2020, 51 (9-10) : 1103 - 1115
  • [48] ZERO-FIELD RESONANCE AND SPIN ALIGNMENT OF TRIPLET-STATE OF CHLOROPLASTS AT 2DEGREESK
    HOFF, AJ
    VANDERWAALS, JH
    BIOCHIMICA ET BIOPHYSICA ACTA, 1976, 423 (03) : 615 - 620
  • [49] Observation of resistively detected hole spin resonance and zero-field pseudo-spin splitting in epitaxial graphene
    Ramesh G. Mani
    John Hankinson
    Claire Berger
    Walter A. de Heer
    Nature Communications, 3
  • [50] THE SPECTROSCOPY OF XANTHIONE IN XANTHONE - AN EXAMPLE OF SPIN-ORBIT-COUPLING DOMINATED ZERO-FIELD SPLITTING
    BURLAND, DM
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (06): : 2635 - 2642