Nanoscale zero-field electron spin resonance spectroscopy

被引:29
|
作者
Kong, Fei [1 ,2 ,3 ,4 ]
Zhao, Pengju [1 ,2 ,4 ]
Ye, Xiangyu [1 ,2 ,4 ]
Wang, Zhecheng [1 ,2 ,4 ]
Qin, Zhuoyang [1 ,2 ,4 ]
Yu, Pei [1 ,2 ,4 ]
Su, Jihu [1 ,2 ,3 ,4 ]
Shi, Fazhan [1 ,2 ,3 ,4 ]
Du, Jiangfeng [1 ,2 ,3 ,4 ]
机构
[1] USTC, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
[2] USTC, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] USTC, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] USTC, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
中国国家自然科学基金;
关键词
PARAMAGNETIC-RESONANCE; MAGNETIC-RESONANCE; AMBIENT CONDITIONS; DIAMOND; RESOLUTION; DYNAMICS;
D O I
10.1038/s41467-018-03969-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry, and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ZERO-FIELD PARAMAGNETIC RESONANCE IN FERRIC ACETYLACETONATE
    SYMMONS, HF
    BOGLE, GS
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1963, 82 (527): : 412 - &
  • [32] Geometric dephasing in zero-field magnetic resonance
    Univ of Oxford, Oxford, United Kingdom
    J Chem Phys, 8 (3007-3016):
  • [33] ZERO-FIELD SPIN ABSORPTION IN PARAMAGNETIC SALTS
    PICKAR, AD
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (3A): : A775 - &
  • [34] ZERO-FIELD SPIN RELAXATION OF POSITIVE MUONS
    HOLZSCHUH, E
    MEIER, PF
    PHYSICAL REVIEW B, 1984, 29 (03): : 1129 - 1133
  • [35] The zero-field resonance in optical pumping experiments
    James, B. W.
    Tango, W. J.
    EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (06)
  • [36] ZERO-FIELD MAGNETIC-RESONANCE SPECTROMETER
    CHAUGHULE, RS
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1989, 27 (7-8) : 366 - 372
  • [37] Zero-Field Fiske Resonance Coupled with Spin-Waves in Ferromagnetic Josephson Junctions
    Hikino, Shin-ichi
    Mori, Michiyasu
    Maekawa, Sadamichi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (07)
  • [38] Geometric dephasing in zero-field magnetic resonance
    Jones, JA
    Pines, A
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (08): : 3007 - 3016
  • [39] ZERO-FIELD MUON-SPIN-RESONANCE LINEWIDTHS IN DILUTE MAGNETIC-ALLOYS
    GIST, GA
    DODDS, SA
    PHYSICAL REVIEW B, 1984, 30 (05): : 2340 - 2344
  • [40] ZERO-FIELD NUCLEAR MAGNETIC-RESONANCE
    WEITEKAMP, DP
    BIELECKI, A
    ZAX, D
    ZILM, K
    PINES, A
    PHYSICAL REVIEW LETTERS, 1983, 50 (22) : 1807 - 1810