Nanoscale zero-field electron spin resonance spectroscopy

被引:29
|
作者
Kong, Fei [1 ,2 ,3 ,4 ]
Zhao, Pengju [1 ,2 ,4 ]
Ye, Xiangyu [1 ,2 ,4 ]
Wang, Zhecheng [1 ,2 ,4 ]
Qin, Zhuoyang [1 ,2 ,4 ]
Yu, Pei [1 ,2 ,4 ]
Su, Jihu [1 ,2 ,3 ,4 ]
Shi, Fazhan [1 ,2 ,3 ,4 ]
Du, Jiangfeng [1 ,2 ,3 ,4 ]
机构
[1] USTC, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
[2] USTC, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] USTC, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] USTC, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
中国国家自然科学基金;
关键词
PARAMAGNETIC-RESONANCE; MAGNETIC-RESONANCE; AMBIENT CONDITIONS; DIAMOND; RESOLUTION; DYNAMICS;
D O I
10.1038/s41467-018-03969-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry, and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] ELECTRON SPIN RESONANCE LINE WIDTHS OF TRANSITION METAL IONS IN SOLUTION - RELAXATION THROUGH ZERO-FIELD SPLITTING
    CARRINGTON, A
    LUCKHURST, GR
    MOLECULAR PHYSICS, 1964, 8 (02) : 125 - +
  • [22] ZERO-FIELD SPLITTING VERSUS INTERELECTRONIC DISTANCE IN TRIPLET ELECTRON-SPIN-RESONANCE SPECTRA OF LOCALIZED DINITRENES
    MINATO, M
    LAHTI, PM
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1993, 6 (08) : 483 - 487
  • [23] Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy
    Lu, Jian
    Ozel, I. Ozge
    Belvin, Carina A.
    Li, Xian
    Skorupskii, Grigorii
    Sun, Lei
    Ofori-Okai, Benjamin K.
    Dinca, Mircea
    Gedik, Nuh
    Nelson, Keith A.
    CHEMICAL SCIENCE, 2017, 8 (11) : 7312 - 7323
  • [24] Zero-field spin resonance in graphene with proximity-induced spin-orbit coupling
    Kumar, Abhishek
    Maiti, Saurabh
    Maslov, Dmitrii L.
    PHYSICAL REVIEW B, 2021, 104 (15)
  • [25] Absence of unstable zero-field intersubband spin excitations of dilute electron bilayers
    Plaut, AS
    Pinczuk, A
    Tamborenea, PI
    Dennis, BS
    Pfeiffer, LN
    West, KW
    PHYSICAL REVIEW B, 1997, 55 (15): : 9282 - 9285
  • [26] ZERO-FIELD SPIN SPLITTING IN A 2-DIMENSIONAL ELECTRON-GAS
    DAS, B
    DATTA, S
    REIFENBERGER, R
    PHYSICAL REVIEW B, 1990, 41 (12): : 8278 - 8287
  • [27] ZERO-FIELD SPIN RELAXATION IN A FLUCTUATING ENVIRONMENT
    SHIMOO, Y
    SHIBATA, F
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (05) : 1674 - 1676
  • [28] ZERO-FIELD MUON SPIN DEPOLARIZATION REVISITED
    PETZINGER, KG
    WEI, SH
    HYPERFINE INTERACTIONS, 1984, 18 (1-4): : 441 - 446
  • [29] Zero-field muon spin echo - Comments
    Sonier, J
    Suleimanov, NM
    Kreitzman, S
    Suleimanov, NM
    PHYSICA B, 2000, 289 : 680 - 680
  • [30] Zero-Field Spin Waves in YIG Nanowaveguides
    Nikolaev, Kirill O.
    Lake, Stephanie R.
    Schmidt, Georg
    Demokritov, Sergej O.
    Demidov, Vladislav E.
    NANO LETTERS, 2023, 23 (18) : 8719 - 8724