Fundamental solitons in the nonlinear fractional Schrodinger equation with a PT - symmetric potential

被引:44
|
作者
Huang, Changming [1 ]
Deng, Hanying [2 ]
Zhang, Weifeng [3 ]
Ye, Fangwei [3 ,4 ]
Dong, Liangwei [5 ]
机构
[1] Changzhi Univ, Dept Elect Informat & Phys, Changzhi 046011, Shanxi, Peoples R China
[2] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Phys & Astron, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[4] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[5] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM-MECHANICS; OPTICS; BEAMS; DYNAMICS;
D O I
10.1209/0295-5075/122/24002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the existence and stability of fundamental solitons in a PT - symmetric Gaussian potential embedded into a material with fractional effects. Fundamental solitary waves with low power both in defocusing and focusing medium originate from the same eigenmode, and the smaller the Levy index, the narrower the width of solitons. The linear stability analysis of fundamental solitons has been carried out in fractional dimension. PT - symmetric solitons are completely stable for a moderate Levy index and gain/loss coefficient in a wide existence region. Copyright (C) EPLA, 2018.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Higher order effects on constant intensity waves of nonlinear Schrodinger equation with PT symmetric potential
    Saha, Naresh
    Roy, Barnana
    OPTIK, 2021, 226
  • [32] Collisional dynamics of solitons in the coupled PT symmetric nonlocal nonlinear Schrodinger equations
    Vinayagam, P. S.
    Radha, R.
    Al Khawaja, U.
    Ling, Liming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 52 : 1 - 10
  • [33] Stabilization of single- and multi-peak solitons in the fractional nonlinear Schrodinger equation with a trapping potential
    Qiu, Yunli
    Malomed, Boris A.
    Mihalache, Dumitru
    Zhu, Xing
    Peng, Xi
    He, Yingji
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [34] Nonlinear modes in a generalized PT-symmetric discrete nonlinear Schrodinger equation
    Pelinovsky, D. E.
    Zezyulin, D. A.
    Konotop, V. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (08)
  • [35] Nonlinear tunnelling of spatial solitons in PT-symmetric potential
    Xu, Yun-Jie
    Dai, Chao-Qing
    OPTICS COMMUNICATIONS, 2014, 318 : 112 - 119
  • [36] The Convergence of Symmetric Discretization Models for Nonlinear Schrodinger Equation in Dark Solitons' Motion
    Li, Yazhuo
    Luo, Qian
    Feng, Quandong
    SYMMETRY-BASEL, 2023, 15 (06):
  • [37] On general solitons in the parity-time-symmetric defocusing nonlinear Schrodinger equation
    Rao, Jiguang
    He, Jingsong
    Mihalache, Dumitru
    Cheng, Yi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [38] Families of fundamental solitons in the two-dimensional superlattices based on the fractional Schrodinger equation
    Ren, Xiaoping
    Deng, Fang
    Huang, Jing
    OPTICS COMMUNICATIONS, 2022, 519
  • [39] Symmetry breaking of solitons in the PT-symmetric nonlinear Schrodinger equation with the cubic-quintic competing saturable nonlinearity
    Bo, Wen-Bo
    Wang, Ru-Ru
    Liu, Wei
    Wang, Yue-Yue
    CHAOS, 2022, 32 (09)
  • [40] Bright-dark and dark-dark solitons in coupled nonlinear Schrodinger equation with PT-symmetric potentials
    Nath, Debraj
    Gao, Yali
    Mareeswaran, R. Babu
    Kanna, T.
    Roy, Barnana
    CHAOS, 2017, 27 (12)