Fundamental solitons in the nonlinear fractional Schrodinger equation with a PT - symmetric potential

被引:44
|
作者
Huang, Changming [1 ]
Deng, Hanying [2 ]
Zhang, Weifeng [3 ]
Ye, Fangwei [3 ,4 ]
Dong, Liangwei [5 ]
机构
[1] Changzhi Univ, Dept Elect Informat & Phys, Changzhi 046011, Shanxi, Peoples R China
[2] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Phys & Astron, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[4] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[5] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM-MECHANICS; OPTICS; BEAMS; DYNAMICS;
D O I
10.1209/0295-5075/122/24002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the existence and stability of fundamental solitons in a PT - symmetric Gaussian potential embedded into a material with fractional effects. Fundamental solitary waves with low power both in defocusing and focusing medium originate from the same eigenmode, and the smaller the Levy index, the narrower the width of solitons. The linear stability analysis of fundamental solitons has been carried out in fractional dimension. PT - symmetric solitons are completely stable for a moderate Levy index and gain/loss coefficient in a wide existence region. Copyright (C) EPLA, 2018.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Stable solitons and interactions of the logarithmic nonlinear Schrodinger equation with two PT-symmetric non-periodic potentials
    Zhou, Zijian
    Song, Jin
    Weng, Weifang
    Yan, Zhenya
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [42] Fractional-order effect on soliton wave conversion and stability for the two-Levy-index fractional nonlinear Schrodinger equation with PT-symmetric potential
    Yu, Fajun
    Li, Li
    Zhang, Jiefang
    Yan, Jingwen
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 460
  • [43] Rogue waves in the nonlocal PT-symmetric nonlinear Schrodinger equation
    Yang, Bo
    Yang, Jianke
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (04) : 945 - 973
  • [44] Spontaneous symmetry breaking and ghost states supported by the fractional PT-symmetric saturable nonlinear Schrodinger equation
    Zhong, Ming
    Wang, Li
    Li, Pengfei
    Yan, Zhenya
    CHAOS, 2023, 33 (01)
  • [45] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [46] Resonant optical solitons with conformable time-fractional nonlinear Schrodinger equation
    Seadawy, Aly R.
    Bilal, M.
    Younis, M.
    Rizvi, S. T. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (03):
  • [47] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [48] Vortex solitons in fractional nonlinear Schrodinger equation with the cubic-quintic nonlinearity
    Li, Pengfei
    Malomed, Boris A.
    Mihalache, Dumitru
    CHAOS SOLITONS & FRACTALS, 2020, 137
  • [49] New optical solitons of nonlinear conformable fractional Schrodinger-Hirota equation
    Rezazadeh, Hadi
    Mirhosseini-Alizamini, Seyed Mehdi
    Eslami, Mostafa
    Rezazadeh, Mohammadreza
    Mirzazadeh, Mohammad
    Abbagari, Souleymanou
    OPTIK, 2018, 172 : 545 - 553
  • [50] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176