The Convergence of Symmetric Discretization Models for Nonlinear Schrodinger Equation in Dark Solitons' Motion

被引:1
|
作者
Li, Yazhuo [1 ]
Luo, Qian [1 ]
Feng, Quandong [1 ]
机构
[1] Beijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
基金
中国国家自然科学基金;
关键词
nonlinear Schrodinger equation; second-order symmetric difference; space-symmetric discretization models; time-space discretization models; Crank-Nicolson method; new difference method; SYMPLECTIC METHODS; NUMERICAL-SOLUTION; SCHEME; SIMULATION;
D O I
10.3390/sym15061229
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Schrodinger equation is one of the most basic equations in quantum mechanics. In this paper, we study the convergence of symmetric discretization models for the nonlinear Schrodinger equation in dark solitons' motion and verify the theoretical results through numerical experiments. Via the second-order symmetric difference, we can obtain two popular space-symmetric discretization models of the nonlinear Schrodinger equation in dark solitons' motion: the direct-discrete model and the Ablowitz-Ladik model. Furthermore, applying the midpoint scheme with symmetry to the space discretization models, we obtain two time-space discretization models: the Crank-Nicolson method and the new difference method. Secondly, we demonstrate that the solutions of the two space-symmetric discretization models converge to the solution of the nonlinear Schrodinger equation. Additionally, we prove that the convergence order of the two time-space discretization models is O(h(2)+t(2)) in discrete L-2-norm error estimates. Finally, we present some numerical experiments to verify the theoretical results and show that our numerical experiments agree well with the proven theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Symplectic schemes and symmetric schemes for nonlinear Schrodinger equation in the case of dark solitons motion
    Yao, Yiming
    Xu, Miao
    Zhu, Beibei
    Feng, Quandong
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (06)
  • [2] Symplectic simulation of dark solitons motion for nonlinear Schrodinger equation
    Zhu, Beibei
    Tang, Yifa
    Zhang, Ruili
    Zhang, Yihao
    NUMERICAL ALGORITHMS, 2019, 81 (04) : 1485 - 1503
  • [3] Hamiltonian theory of motion of dark solitons in the theory of nonlinear Schrodinger equation
    Kamchatnov, A. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 219 (01) : 567 - 575
  • [4] Dressed Dark Solitons of the Defocusing Nonlinear Schrodinger Equation
    Lou Sen-Yue
    Cheng Xue-Ping
    Tang Xiao-Yan
    CHINESE PHYSICS LETTERS, 2014, 31 (07)
  • [5] THE UNSTABLE NONLINEAR SCHRODINGER-EQUATION AND DARK SOLITONS
    IIZUKA, T
    WADATI, M
    YAJIMA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (09) : 2862 - 2875
  • [6] Scattering of solitons and dark solitons by potential walls in the nonlinear Schrodinger equation
    Sakaguchi, H
    Tamura, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 292 - 298
  • [7] Bright-dark and dark-dark solitons in coupled nonlinear Schrodinger equation with PT-symmetric potentials
    Nath, Debraj
    Gao, Yali
    Mareeswaran, R. Babu
    Kanna, T.
    Roy, Barnana
    CHAOS, 2017, 27 (12)
  • [8] Bright and dark solitons of the generalized nonlinear Schrodinger's equation
    Biswas, Anjan
    Milovic, Daniela
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) : 1473 - 1484
  • [9] Fundamental solitons in the nonlinear fractional Schrodinger equation with a PT - symmetric potential
    Huang, Changming
    Deng, Hanying
    Zhang, Weifeng
    Ye, Fangwei
    Dong, Liangwei
    EPL, 2018, 122 (02)
  • [10] MODULATIONAL INSTABILITIES AND DARK SOLITONS IN A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    KIVSHAR, YS
    ANDERSON, D
    LISAK, M
    PHYSICA SCRIPTA, 1993, 47 (05): : 679 - 681