The Convergence of Symmetric Discretization Models for Nonlinear Schrodinger Equation in Dark Solitons' Motion

被引:1
|
作者
Li, Yazhuo [1 ]
Luo, Qian [1 ]
Feng, Quandong [1 ]
机构
[1] Beijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
基金
中国国家自然科学基金;
关键词
nonlinear Schrodinger equation; second-order symmetric difference; space-symmetric discretization models; time-space discretization models; Crank-Nicolson method; new difference method; SYMPLECTIC METHODS; NUMERICAL-SOLUTION; SCHEME; SIMULATION;
D O I
10.3390/sym15061229
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Schrodinger equation is one of the most basic equations in quantum mechanics. In this paper, we study the convergence of symmetric discretization models for the nonlinear Schrodinger equation in dark solitons' motion and verify the theoretical results through numerical experiments. Via the second-order symmetric difference, we can obtain two popular space-symmetric discretization models of the nonlinear Schrodinger equation in dark solitons' motion: the direct-discrete model and the Ablowitz-Ladik model. Furthermore, applying the midpoint scheme with symmetry to the space discretization models, we obtain two time-space discretization models: the Crank-Nicolson method and the new difference method. Secondly, we demonstrate that the solutions of the two space-symmetric discretization models converge to the solution of the nonlinear Schrodinger equation. Additionally, we prove that the convergence order of the two time-space discretization models is O(h(2)+t(2)) in discrete L-2-norm error estimates. Finally, we present some numerical experiments to verify the theoretical results and show that our numerical experiments agree well with the proven theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation
    Beibei Zhu
    Yifa Tang
    Ruili Zhang
    Yihao Zhang
    Numerical Algorithms, 2019, 81 : 1485 - 1503
  • [32] Dynamics of solitons in the model of nonlinear Schrodinger equation with an external harmonic potential: II. Dark solitons
    Tenorio, CH
    Vargas, EV
    Serkin, VN
    Granados, MA
    Belyaeva, TL
    Moreno, RP
    Lara, LM
    QUANTUM ELECTRONICS, 2005, 35 (10) : 929 - 937
  • [33] A note on an integrable discretization of the nonlinear Schrodinger equation
    Black, W
    Weideman, JAC
    Herbst, BM
    INVERSE PROBLEMS, 1999, 15 (03) : 807 - 810
  • [34] A note on an integrable discretization of the nonlinear Schrodinger equation
    Suris, YB
    INVERSE PROBLEMS, 1997, 13 (04) : 1121 - 1136
  • [36] Dark Bound Solitons and Soliton Chains for the Higher-Order Nonlinear Schrodinger Equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Meng, Xiang-Hua
    Yu, Xin
    Liu, Ying
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (03) : 689 - 698
  • [37] Stochastic dark solitons for a higher-order nonlinear Schrodinger equation in the optical fiber
    Zhong, Hui
    Tian, Bo
    Li, Min
    Sun, Wen-Rong
    Zhen, Hui-Ling
    JOURNAL OF MODERN OPTICS, 2013, 60 (19) : 1644 - 1651
  • [38] On the existence of dark solitons in a cubic-quintic nonlinear Schrodinger equation with a periodic potential
    Torres, Pedro J.
    Konotop, Vladimir V.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 1 - 9
  • [39] Bipolar solitons of the focusing nonlinear Schrodinger equation
    Liu, Zhongxuan
    Feng, Qi
    Lin, Chengyou
    Chen, Zhaoyang
    Ding, Yingchun
    PHYSICA B-CONDENSED MATTER, 2016, 501 : 117 - 122
  • [40] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    PHYSICAL REVIEW E, 2007, 76 (03):