The Convergence of Symmetric Discretization Models for Nonlinear Schrodinger Equation in Dark Solitons' Motion

被引:1
|
作者
Li, Yazhuo [1 ]
Luo, Qian [1 ]
Feng, Quandong [1 ]
机构
[1] Beijing Forestry Univ, Coll Sci, Beijing 100083, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 06期
基金
中国国家自然科学基金;
关键词
nonlinear Schrodinger equation; second-order symmetric difference; space-symmetric discretization models; time-space discretization models; Crank-Nicolson method; new difference method; SYMPLECTIC METHODS; NUMERICAL-SOLUTION; SCHEME; SIMULATION;
D O I
10.3390/sym15061229
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Schrodinger equation is one of the most basic equations in quantum mechanics. In this paper, we study the convergence of symmetric discretization models for the nonlinear Schrodinger equation in dark solitons' motion and verify the theoretical results through numerical experiments. Via the second-order symmetric difference, we can obtain two popular space-symmetric discretization models of the nonlinear Schrodinger equation in dark solitons' motion: the direct-discrete model and the Ablowitz-Ladik model. Furthermore, applying the midpoint scheme with symmetry to the space discretization models, we obtain two time-space discretization models: the Crank-Nicolson method and the new difference method. Secondly, we demonstrate that the solutions of the two space-symmetric discretization models converge to the solution of the nonlinear Schrodinger equation. Additionally, we prove that the convergence order of the two time-space discretization models is O(h(2)+t(2)) in discrete L-2-norm error estimates. Finally, we present some numerical experiments to verify the theoretical results and show that our numerical experiments agree well with the proven theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [42] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [43] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54
  • [44] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [45] Solitons in a modified discrete nonlinear Schrodinger equation
    Molina, Mario I.
    SCIENTIFIC REPORTS, 2018, 8
  • [46] Spinning solitons of a modified nonlinear Schrodinger equation
    Brihaye, Y
    Hartmann, B
    Zakrzewski, WJ
    PHYSICAL REVIEW D, 2004, 69 (08): : 4
  • [47] Bright solitons of generalized nonlinear Schrodinger equation
    Jasinski, J
    OPTICS COMMUNICATIONS, 1999, 172 (1-6) : 325 - 333
  • [48] On the reflection of solitons of the cubic nonlinear Schrodinger equation
    Katsaounis, Theodoros
    Mitsotakis, Dimitrios
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1013 - 1018
  • [49] Nonlinear Schrodinger equation solitons on quantum droplets
    Carstea, A. S.
    Ludu, A.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [50] STOCHASTIC ACCELERATION OF SOLITONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Abou Salem, Walid K.
    Sulem, Catherine
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (01) : 117 - 152