ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE

被引:45
|
作者
Lv, Shaogao [1 ]
Lin, Huazhen [2 ]
Lian, Heng [3 ]
Huang, Jian [4 ]
机构
[1] Nanjing Audit Univ, Nanjing, Jiangsu, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Ctr Stat Res, Chengdu 611130, Sichuan, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[4] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 02期
基金
中国国家自然科学基金;
关键词
Quantile regression; additive models; sparsity; regularization methods; reproducing kernel Hilbert space; VARIABLE SELECTION; MODEL SELECTION; OPTIMAL RATES; LASSO; ESTIMATORS; SHRINKAGE;
D O I
10.1214/17-AOS1567
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the estimation of the sparse additive quantile regression (SAQR) in high-dimensional settings. Given the nonsmooth nature of the quantile loss function and the nonparametric complexities of the component function estimation, it is challenging to analyze the theoretical properties of ultrahigh-dimensional SAQR. We propose a regularized learning approach with a two-fold Lasso-type regularization in a reproducing kernel Hilbert space (RKHS) for SAQR. We establish nonasymptotic oracle inequalities for the excess risk of the proposed estimator without any coherent conditions. If additional assumptions including an extension of the restricted eigenvalue condition are satisfied, the proposed method enjoys sharp oracle rates without the light tail requirement. In particular, the proposed estimator achieves the minimax lower bounds established for sparse additive mean regression. As a by-product, we also establish the concentration inequality for estimating the population mean when the general Lipschitz loss is involved. The practical effectiveness of the new method is demonstrated by competitive numerical results.
引用
收藏
页码:781 / 813
页数:33
相关论文
共 50 条
  • [41] Davis-Wielandt-Berezin radius inequalities of reproducing kernel Hilbert space operators
    Sen, Anirban
    Bhunia, Pintu
    Paul, Kallol
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [42] Sparse online kernelized actor-critic Learning in reproducing kernel Hilbert space
    Yongliang Yang
    Hufei Zhu
    Qichao Zhang
    Bo Zhao
    Zhenning Li
    Donald C. Wunsch
    Artificial Intelligence Review, 2022, 55 : 23 - 58
  • [43] Sparse representation in Szego kernels through reproducing kernel Hilbert space theory with applications
    Mo, Y.
    Qian, T.
    Mi, W.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (04)
  • [44] Sparse online kernelized actor-critic Learning in reproducing kernel Hilbert space
    Yang, Yongliang
    Zhu, Hufei
    Zhang, Qichao
    Zhao, Bo
    Li, Zhenning
    Wunsch, Donald C.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (01) : 23 - 58
  • [45] The Henderson Smoother in Reproducing Kernel Hilbert Space
    Dagum, Estela Bee
    Bianconcini, Silvia
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2008, 26 (04) : 536 - 545
  • [46] Regularization in a functional reproducing kernel Hilbert space
    Wang, Rui
    Xu, Yuesheng
    JOURNAL OF COMPLEXITY, 2021, 66
  • [47] A Brief Digest on Reproducing Kernel Hilbert Space
    Tong, Shou-yu
    Cong, Fu-zhong
    Wang, Zhi-xia
    INTERNATIONAL CONFERENCE ON COMPUTER, MECHATRONICS AND ELECTRONIC ENGINEERING (CMEE 2016), 2016,
  • [48] Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial
    Nosedal-Sanchez, Alvaro
    Storlie, Curtis B.
    Lee, Thomas C. M.
    Christensen, Ronald
    AMERICAN STATISTICIAN, 2012, 66 (01): : 50 - 60
  • [49] Flexible Expectile Regression in Reproducing Kernel Hilbert Spaces
    Yang, Yi
    Zhang, Teng
    Zou, Hui
    TECHNOMETRICS, 2018, 60 (01) : 26 - 35
  • [50] Rainfall-runoff modeling through regression in the reproducing kernel Hilbert space algorithm
    Safari, Mir Jafar Sadegh
    Arashloo, Shervin Rahimzadeh
    Mehr, Ali Danandeh
    JOURNAL OF HYDROLOGY, 2020, 587