ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE

被引:45
|
作者
Lv, Shaogao [1 ]
Lin, Huazhen [2 ]
Lian, Heng [3 ]
Huang, Jian [4 ]
机构
[1] Nanjing Audit Univ, Nanjing, Jiangsu, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Ctr Stat Res, Chengdu 611130, Sichuan, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[4] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 02期
基金
中国国家自然科学基金;
关键词
Quantile regression; additive models; sparsity; regularization methods; reproducing kernel Hilbert space; VARIABLE SELECTION; MODEL SELECTION; OPTIMAL RATES; LASSO; ESTIMATORS; SHRINKAGE;
D O I
10.1214/17-AOS1567
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the estimation of the sparse additive quantile regression (SAQR) in high-dimensional settings. Given the nonsmooth nature of the quantile loss function and the nonparametric complexities of the component function estimation, it is challenging to analyze the theoretical properties of ultrahigh-dimensional SAQR. We propose a regularized learning approach with a two-fold Lasso-type regularization in a reproducing kernel Hilbert space (RKHS) for SAQR. We establish nonasymptotic oracle inequalities for the excess risk of the proposed estimator without any coherent conditions. If additional assumptions including an extension of the restricted eigenvalue condition are satisfied, the proposed method enjoys sharp oracle rates without the light tail requirement. In particular, the proposed estimator achieves the minimax lower bounds established for sparse additive mean regression. As a by-product, we also establish the concentration inequality for estimating the population mean when the general Lipschitz loss is involved. The practical effectiveness of the new method is demonstrated by competitive numerical results.
引用
收藏
页码:781 / 813
页数:33
相关论文
共 50 条
  • [21] On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power
    Gallego-Castillo, Cristobal
    Bessa, Ricardo
    Cavalcante, Laura
    Lopez-Garcia, Oscar
    ENERGY, 2016, 113 : 355 - 365
  • [22] On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space
    Yamanci, Ulas
    Gurdal, Mehmet
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 1531 - 1537
  • [23] NEW BEREZIN SYMBOL INEQUALITIES FOR OPERATORS ON THE REPRODUCING KERNEL HILBERT SPACE
    Tapdigoglu, Ramiz
    OPERATORS AND MATRICES, 2021, 15 (03): : 1031 - 1043
  • [24] Approximate nonparametric quantile regression in reproducing kernel Hilbert spaces via random projection
    Zhang, Fode
    Li, Rui
    Lian, Heng
    INFORMATION SCIENCES, 2021, 547 (547) : 244 - 254
  • [25] Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
    Yuzhu Tian
    Hongmei Lin
    Heng Lian
    Zengyan Fan
    Metrika, 2021, 84 : 429 - 442
  • [26] Additive functional regression in reproducing kernel Hilbert spaces under smoothness condition
    Tian, Yuzhu
    Lin, Hongmei
    Lian, Heng
    Fan, Zengyan
    METRIKA, 2021, 84 (03) : 429 - 442
  • [27] On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities
    Bhunia, P.
    Gurdal, M.
    Paul, K.
    Sen, A.
    Tapdigoglu, R.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (09) : 970 - 986
  • [28] OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Yamanci, Ulas
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 204 - 211
  • [29] Riccati inequalities and reproducing kernel Hilbert spaces
    Dubi, Chen
    Dym, Harry
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 458 - 482
  • [30] VARIOUS INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Nguyen Du Vi Nhan
    Dinh Thanh Duc
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 221 - 237