ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE

被引:45
|
作者
Lv, Shaogao [1 ]
Lin, Huazhen [2 ]
Lian, Heng [3 ]
Huang, Jian [4 ]
机构
[1] Nanjing Audit Univ, Nanjing, Jiangsu, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Ctr Stat Res, Chengdu 611130, Sichuan, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[4] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 02期
基金
中国国家自然科学基金;
关键词
Quantile regression; additive models; sparsity; regularization methods; reproducing kernel Hilbert space; VARIABLE SELECTION; MODEL SELECTION; OPTIMAL RATES; LASSO; ESTIMATORS; SHRINKAGE;
D O I
10.1214/17-AOS1567
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the estimation of the sparse additive quantile regression (SAQR) in high-dimensional settings. Given the nonsmooth nature of the quantile loss function and the nonparametric complexities of the component function estimation, it is challenging to analyze the theoretical properties of ultrahigh-dimensional SAQR. We propose a regularized learning approach with a two-fold Lasso-type regularization in a reproducing kernel Hilbert space (RKHS) for SAQR. We establish nonasymptotic oracle inequalities for the excess risk of the proposed estimator without any coherent conditions. If additional assumptions including an extension of the restricted eigenvalue condition are satisfied, the proposed method enjoys sharp oracle rates without the light tail requirement. In particular, the proposed estimator achieves the minimax lower bounds established for sparse additive mean regression. As a by-product, we also establish the concentration inequality for estimating the population mean when the general Lipschitz loss is involved. The practical effectiveness of the new method is demonstrated by competitive numerical results.
引用
收藏
页码:781 / 813
页数:33
相关论文
共 50 条
  • [31] On sparse interpolation in reproducing kernel Hilbert spaces
    Dodd, TJ
    Harrison, RF
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1962 - 1967
  • [32] An Example of a Reproducing Kernel Hilbert Space
    Tutaj, Edward
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 193 - 221
  • [33] Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators
    Anirban Sen
    Pintu Bhunia
    Kallol Paul
    Afrika Matematika, 2023, 34
  • [34] An Example of a Reproducing Kernel Hilbert Space
    Edward Tutaj
    Complex Analysis and Operator Theory, 2019, 13 : 193 - 221
  • [35] Optimal prediction for high-dimensional functional quantile regression in reproducing kernel Hilbert spaces
    Yang, Guangren
    Liu, Xiaohui
    Lian, Heng
    JOURNAL OF COMPLEXITY, 2021, 66
  • [36] Choosing shape parameters for regression in reproducing kernel Hilbert space and variable selection
    Tan, Xin
    Xia, Yingcun
    Kong, Efang
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (03) : 514 - 528
  • [37] Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function
    Lestari, Budi
    Chamidah, Nur
    Aydin, Dursun
    Yilmaz, Ersin
    SYMMETRY-BASEL, 2022, 14 (11):
  • [38] Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space
    Xie, Haihan
    Kong, Linglong
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [39] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1479 - 1500
  • [40] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    D. Benelmadani
    K. Benhenni
    S. Louhichi
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 1479 - 1500