Defining quantum divergences via convex optimization

被引:19
|
作者
Fawzi, Hamza [1 ]
Fawzi, Omar [2 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge, England
[2] Univ Lyon, ENS Lyon, UCBL, CNRS,Inria,LIP, F-69342 Lyon 07, France
来源
QUANTUM | 2021年 / 5卷
关键词
RELATIVE ENTROPY; BOUNDS; COMMUNICATION; PRIVATE;
D O I
10.22331/q-2021-01-26-387
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new quantum Renyi divergence D-alpha(#) for alpha is an element of (1, infinity) defined in terms of a convex optimization program. This divergence has several desirable computational and operational properties such as an efficient semidefinite programming representation for states and channels, and a chain rule property. An important property of this new divergence is that its regularization is equal to the sandwiched (also known as the minimal) quantum Renyi divergence. This allows us to prove several results. First, we use it to get a converging hierarchy of upper bounds on the regularized sandwiched alpha-Renyi divergence between quantum channels for alpha > 1. Second it allows us to prove a chain rule property for the sandwiched alpha-Renyi divergence for alpha > 1 which we use to characterize the strong converse exponent for channel discrimination. Finally it allows us to get improved bounds on quantum channel capacities.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Mismatch Filter Design via Convex Optimization
    Kajenski, Peter J.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (04) : 1587 - 1591
  • [42] On sequential hypotheses testing via convex optimization
    Juditsky, A. B.
    Nemirovski, A. S.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (05) : 809 - 825
  • [43] On sequential hypotheses testing via convex optimization
    A. B. Juditsky
    A. S. Nemirovski
    Automation and Remote Control, 2015, 76 : 809 - 825
  • [44] Convex Maximization via Adjustable Robust Optimization
    Selvi, Aras
    Ben-Tal, Aharon
    Brekelmans, Ruud
    den Hertog, Dick
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (04) : 2091 - 2105
  • [45] Color constancy via convex kernel optimization
    Yuan, Xiaotong
    Li, Stan Z.
    He, Ran
    COMPUTER VISION - ACCV 2007, PT I, PROCEEDINGS, 2007, 4843 : 728 - 737
  • [46] Nonlinear observer design via convex optimization
    Howell, A
    Hedrick, JR
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2088 - 2093
  • [47] Online Summarization via Submodular and Convex Optimization
    Elhamifar, Ehsan
    Kaluza, M. Clara De Paolis
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1818 - 1826
  • [48] Constrained Subspace Estimation via Convex Optimization
    Santamaria, I.
    Via, J.
    Kirby, M.
    Marrinan, T.
    Peterson, C.
    Scharf, L.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1200 - 1204
  • [49] Hypercomplex Tensor Completion via Convex Optimization
    Mizoguchi, Takehiko
    Yamada, Isao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (15) : 4078 - 4092
  • [50] DEMIXING SPARSE SIGNALS VIA CONVEX OPTIMIZATION
    Zhou, Yi
    Liang, Yingbin
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4202 - 4206