Defining quantum divergences via convex optimization

被引:19
|
作者
Fawzi, Hamza [1 ]
Fawzi, Omar [2 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge, England
[2] Univ Lyon, ENS Lyon, UCBL, CNRS,Inria,LIP, F-69342 Lyon 07, France
来源
QUANTUM | 2021年 / 5卷
关键词
RELATIVE ENTROPY; BOUNDS; COMMUNICATION; PRIVATE;
D O I
10.22331/q-2021-01-26-387
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new quantum Renyi divergence D-alpha(#) for alpha is an element of (1, infinity) defined in terms of a convex optimization program. This divergence has several desirable computational and operational properties such as an efficient semidefinite programming representation for states and channels, and a chain rule property. An important property of this new divergence is that its regularization is equal to the sandwiched (also known as the minimal) quantum Renyi divergence. This allows us to prove several results. First, we use it to get a converging hierarchy of upper bounds on the regularized sandwiched alpha-Renyi divergence between quantum channels for alpha > 1. Second it allows us to prove a chain rule property for the sandwiched alpha-Renyi divergence for alpha > 1 which we use to characterize the strong converse exponent for channel discrimination. Finally it allows us to get improved bounds on quantum channel capacities.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Convex Defining Functions for Convex Domains
    Herbig, A-K.
    McNeal, J. D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (02) : 433 - 454
  • [32] Convex Defining Functions for Convex Domains
    A.-K. Herbig
    J. D. McNeal
    Journal of Geometric Analysis, 2012, 22 : 433 - 454
  • [33] Learning data discretization via convex optimization
    Franc, Vojtech
    Fikar, Ondrej
    Bartos, Karel
    Sofka, Michal
    MACHINE LEARNING, 2018, 107 (02) : 333 - 355
  • [34] Learning data discretization via convex optimization
    Vojtech Franc
    Ondrej Fikar
    Karel Bartos
    Michal Sofka
    Machine Learning, 2018, 107 : 333 - 355
  • [35] Exact Matrix Completion via Convex Optimization
    Emmanuel J. Candès
    Benjamin Recht
    Foundations of Computational Mathematics, 2009, 9 : 717 - 772
  • [36] Radar Signal Demixing via Convex Optimization
    Xie, Youye
    Li, Shuang
    Tang, Gongguo
    Wakin, Michael B.
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [37] Sparse Reinforcement Learning via Convex Optimization
    Qin, Zhiwei
    Li, Weichang
    Janoos, Firdaus
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 424 - 432
  • [38] Global passivity enforcement via convex optimization
    Porkar, B.
    Vakilian, M.
    Shahrtash, S. M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION B-ENGINEERING, 2008, 32 (B3): : 265 - 277
  • [39] Decomposition of Toeplitz matrices via convex optimization
    Georgiou, Tryphon T.
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (09) : 537 - 540
  • [40] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) : 717 - 772