Color constancy via convex kernel optimization

被引:0
|
作者
Yuan, Xiaotong [1 ]
Li, Stan Z. [1 ]
He, Ran [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Ctr Biomet & Secur Res, Beijing 100080, Peoples R China
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces a novel convex kernel based method for color constancy computation with explicit illuminant parameter estimation. A simple linear render model is adopted and the illuminants in a new scene that contains some of the color surfaces seen in the training image are sequentially estimated in a global optimization framework. The proposed method is fully data-driven and initialization invariant. Nonlinear color constancy can also be approximately solved in this kernel optimization framework with piecewise linear assumption. Extensive experiments on real-scene images validate the practical performance of our method.
引用
收藏
页码:728 / 737
页数:10
相关论文
共 50 条
  • [1] Learning the kernel via convex optimization
    Kim, Seung-Jean
    Zymnis, Argyrios
    Magnani, Alessandro
    Koh, Kwangmoo
    Boyd, Stephen
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1997 - 2000
  • [2] Kernel regression for travel time estimation via convex optimization
    Blandin, Sebastien
    El Ghaoui, Laurent
    Bayen, Alexandre
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4360 - 4365
  • [3] COLOR CONSTANCY MODEL OPTIMIZATION WITH SMALL DATASET VIA PRUNING OF CNN FILTERS
    Husseini, Sahar
    Babahajiani, Pouria
    Gabbouj, Moncef
    PROCEEDINGS OF THE 2021 9TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2021,
  • [4] Multi-objective optimization based color constancy
    Faghih, Mohammad Mehdi
    Moghaddam, Mohsen Ebrahimi
    APPLIED SOFT COMPUTING, 2014, 17 : 52 - 66
  • [5] Color constancy via multibranch deep probability network
    Wang, Fei
    Wang, Wei
    Qiu, Zhiliang
    Fang, Jianwu
    Xue, Jianru
    Zhang, Jingru
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (04)
  • [6] Transfer Learning for Color Constancy via Statistic Perspective
    Tang, Yuxiang
    Kang, Xuejing
    Li, Chunxiao
    Lin, Zhaowen
    Ming, Anlong
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2361 - 2369
  • [7] Color Constancy
    Gupte, Vilas
    COLORATION TECHNOLOGY, 2009, 125 (06) : 366 - 367
  • [8] Color Alignment for Relative Color Constancy via Non-Standard References
    Zhao, Yunfeng
    Ferguson, Stuart
    Zhou, Huiyu
    Elliott, Christopher
    Rafferty, Karen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6591 - 6604
  • [9] Color Alignment for Relative Color Constancy via Non-Standard References
    Zhao, Yunfeng
    Ferguson, Stuart
    Zhou, Huiyu
    Elliott, Christopher
    Rafferty, Karen
    IEEE Transactions on Image Processing, 2022, 31 : 6591 - 6604
  • [10] COLOR CONSTANCY
    BERTULIS, A
    GLEZER, VD
    PERCEPTION, 1990, 19 (03) : 357 - 357