A new class of optimal optical orthogonal codes with weight five

被引:44
|
作者
Ma, SK [1 ]
Chang, YX [1 ]
机构
[1] Beijing Jiaotong Univ, Math Inst, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
cyclic packing; difference matrix (DM); g-regular; optical orthogonal code (OOC); optimal;
D O I
10.1109/TIT.2004.831845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A (v, k, 1) optical orthogonal code (OOC), or briefly a (v, k, 1)-OOC, C, is a family of (0, 1) sequences of length v and weight k satisfying the following two properties: 1) Sigma(0less than or equal totless than or equal tov-1)x(t)x(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C and any integer inot equivalent to 0 (mod v); 2) Sigma(0less than or equal totless than or equal tov-1)x(t)y(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C, y = (y(0), y(1), ..., y(v-1)) is an element of C with x not equal y, and any integer i, where the subscripts are reduced modulo v.A (v, k, 1)-OOC is optimal if it contains [(v - 1)/k(k - 1)] codewords. In this note, we establish that there exists an optimal (3(s)5 v, 5, 1)-OOC for any nonnegative integer s whenever v is a product of primes congruent to 1 modulo 4. This improves the known existence results concerning optimal OOCs.
引用
收藏
页码:1848 / 1850
页数:3
相关论文
共 50 条
  • [41] NEW OPTIMAL (v, {3, 5}, 1, Q) OPTICAL ORTHOGONAL CODES
    Yu, Huangsheng
    Wu, Dianhua
    Wang, Jinhua
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 811 - 823
  • [42] On a class of optimal constant weight ternary codes
    Hadi Kharaghani
    Sho Suda
    Vlad Zaitsev
    Designs, Codes and Cryptography, 2023, 91 : 45 - 54
  • [43] On a class of optimal constant weight ternary codes
    Kharaghani, Hadi
    Suda, Sho
    Zaitsev, Vlad
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (01) : 45 - 54
  • [44] New constructions for optical orthogonal codes, distinct difference sets and synchronous optical orthogonal codes
    Moreno, O
    Kumar, PV
    Lu, HF
    Omrani, R
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 327 - 327
  • [45] Asymptotically Optimal Optical Orthogonal Signature Pattern Codes
    Ji, Lijun
    Ding, Baokun
    Wang, Xin
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 5419 - 5431
  • [46] UNIFIED COMBINATORIAL CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Fan, Cuiling
    Momihara, Koji
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2014, 8 (01) : 53 - 66
  • [47] A class of three-weight and five-weight linear codes
    Li, Fei
    Wang, Qiuyan
    Lin, Dongdai
    DISCRETE APPLIED MATHEMATICS, 2018, 241 : 25 - 38
  • [48] New optimal constant weight codes
    Gashkov, I.
    Taub, D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [49] Design of New Fingerprinting Codes Using Optical Orthogonal Codes
    Zhao, Na
    Yu, Nam Yul
    2015 21ST ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2015, : 294 - 298
  • [50] Optimal optical orthogonal signature pattern codes with weight three and cross-correlation constraint one
    Rong Pan
    Tao Feng
    Lidong Wang
    Xiaomiao Wang
    Designs, Codes and Cryptography, 2020, 88 : 119 - 131