A new class of optimal optical orthogonal codes with weight five

被引:44
|
作者
Ma, SK [1 ]
Chang, YX [1 ]
机构
[1] Beijing Jiaotong Univ, Math Inst, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
cyclic packing; difference matrix (DM); g-regular; optical orthogonal code (OOC); optimal;
D O I
10.1109/TIT.2004.831845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A (v, k, 1) optical orthogonal code (OOC), or briefly a (v, k, 1)-OOC, C, is a family of (0, 1) sequences of length v and weight k satisfying the following two properties: 1) Sigma(0less than or equal totless than or equal tov-1)x(t)x(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C and any integer inot equivalent to 0 (mod v); 2) Sigma(0less than or equal totless than or equal tov-1)x(t)y(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C, y = (y(0), y(1), ..., y(v-1)) is an element of C with x not equal y, and any integer i, where the subscripts are reduced modulo v.A (v, k, 1)-OOC is optimal if it contains [(v - 1)/k(k - 1)] codewords. In this note, we establish that there exists an optimal (3(s)5 v, 5, 1)-OOC for any nonnegative integer s whenever v is a product of primes congruent to 1 modulo 4. This improves the known existence results concerning optimal OOCs.
引用
收藏
页码:1848 / 1850
页数:3
相关论文
共 50 条
  • [21] New Constructions of Asymptotically Optimal Optical Orthogonal Codes With λ=1
    Chung, Jin-Ho
    Yang, Kyeongcheol
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [22] Construction for optimal optical orthogonal codes
    An, XQ
    Qiu, K
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 96 - 100
  • [23] New Classes of Optimal Variable-Weight Optical Orthogonal Codes with Hamming Weights 3 and 4
    Li, Xiyang
    Fan, Pingzhi
    Suehiro, Naoki
    Wu, Dianhua
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (11) : 1843 - 1850
  • [24] Constructions for optimal optical orthogonal codes
    Chang, YX
    Miao, Y
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 127 - 139
  • [25] New Classes of Optimal Variable-Weight Optical Orthogonal Codes Based on Cyclic Difference Families
    WU, Dianhua
    Fan, Pingzhi
    Wang, Xun
    Cheng, Minquan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (11) : 2232 - 2238
  • [26] Optimal Variable-Weight Optical Orthogonal Codes via Difference Packings
    Wu, Dianhua
    Zhao, Hengming
    Fan, Pingzhi
    Shinohara, Satoshi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 57 (08) : 4053 - 4060
  • [27] New Asymptotically Optimal Optical Orthogonal Signature Pattern Codes from Cyclic Codes
    Shen, Lin-Zhi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (10) : 1416 - 1419
  • [28] On a Class of Optimal Constant Weight Codes
    Kharaghani, Hadi
    Suda, Sho
    NEW ADVANCES IN DESIGNS, CODES AND CRYPTOGRAPHY, NADCC 2022, 2024, 86 : 277 - 287
  • [29] A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
    Ruiz, Hamilton M.
    Delgado, Luis M.
    Trujillo, Carlos A.
    IEEE ACCESS, 2020, 8 : 100749 - 100753
  • [30] Multilength Optical Orthogonal Codes: New Upper Bounds and Optimal Constructions
    Luo, Xizhao
    Yin, Jianxing
    Yue, Fei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3305 - 3315