A new class of optimal optical orthogonal codes with weight five

被引:44
|
作者
Ma, SK [1 ]
Chang, YX [1 ]
机构
[1] Beijing Jiaotong Univ, Math Inst, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
cyclic packing; difference matrix (DM); g-regular; optical orthogonal code (OOC); optimal;
D O I
10.1109/TIT.2004.831845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A (v, k, 1) optical orthogonal code (OOC), or briefly a (v, k, 1)-OOC, C, is a family of (0, 1) sequences of length v and weight k satisfying the following two properties: 1) Sigma(0less than or equal totless than or equal tov-1)x(t)x(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C and any integer inot equivalent to 0 (mod v); 2) Sigma(0less than or equal totless than or equal tov-1)x(t)y(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C, y = (y(0), y(1), ..., y(v-1)) is an element of C with x not equal y, and any integer i, where the subscripts are reduced modulo v.A (v, k, 1)-OOC is optimal if it contains [(v - 1)/k(k - 1)] codewords. In this note, we establish that there exists an optimal (3(s)5 v, 5, 1)-OOC for any nonnegative integer s whenever v is a product of primes congruent to 1 modulo 4. This improves the known existence results concerning optimal OOCs.
引用
收藏
页码:1848 / 1850
页数:3
相关论文
共 50 条
  • [31] Combinatorial constructions for optimal multiple-weight optical orthogonal signature pattern codes
    Zhao, Hengming
    Qin, Rongcun
    DISCRETE MATHEMATICS, 2016, 339 (01) : 179 - 193
  • [32] Optimal Variable-Weight Optical Orthogonal Codes via Cyclic Difference Families
    Wu, Dianhua
    Fan, Pingzhi
    Li, Hengchao
    Parampalli, Udaya
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 448 - +
  • [33] Optimal optical orthogonal codes with λ>1
    Omrani, R
    Moreno, O
    Kumar, PV
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 366 - 366
  • [34] GEOMETRIC CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Alderson, T. L.
    Mellinger, K. E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (04) : 451 - 467
  • [35] A class of five-weight cyclic codes and their weight distribution
    Liu, Yan
    Yan, Haode
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 79 (02) : 353 - 366
  • [36] A class of five-weight cyclic codes and their weight distribution
    Yan Liu
    Haode Yan
    Designs, Codes and Cryptography, 2016, 79 : 353 - 366
  • [37] New Variable-Weight Optical Orthogonal Codes with Weights 3 to 5
    Pak, Si-Yeon
    Kim, Hyo-Won
    Ahn, Daehan
    Chung, Jin-Ho
    ENTROPY, 2024, 26 (11)
  • [38] A New Family of Asymptotically Optimal 2-D Optical Orthogonal Codes
    Li, Xiuli
    Li, Jing
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 47 - 51
  • [39] New results on optimal (v, 4, 2, 1) optical orthogonal codes
    Marco Buratti
    Koji Momihara
    Anita Pasotti
    Designs, Codes and Cryptography, 2011, 58 : 89 - 109
  • [40] New results on optimal (v, 4, 2, 1) optical orthogonal codes
    Buratti, Marco
    Momihara, Koji
    Pasotti, Anita
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 58 (01) : 89 - 109