A new class of optimal optical orthogonal codes with weight five

被引:44
|
作者
Ma, SK [1 ]
Chang, YX [1 ]
机构
[1] Beijing Jiaotong Univ, Math Inst, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
cyclic packing; difference matrix (DM); g-regular; optical orthogonal code (OOC); optimal;
D O I
10.1109/TIT.2004.831845
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A (v, k, 1) optical orthogonal code (OOC), or briefly a (v, k, 1)-OOC, C, is a family of (0, 1) sequences of length v and weight k satisfying the following two properties: 1) Sigma(0less than or equal totless than or equal tov-1)x(t)x(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C and any integer inot equivalent to 0 (mod v); 2) Sigma(0less than or equal totless than or equal tov-1)x(t)y(t+i) less than or equal to 1 for any x = (x(0), x(1), ..., x(v-1)) is an element of C, y = (y(0), y(1), ..., y(v-1)) is an element of C with x not equal y, and any integer i, where the subscripts are reduced modulo v.A (v, k, 1)-OOC is optimal if it contains [(v - 1)/k(k - 1)] codewords. In this note, we establish that there exists an optimal (3(s)5 v, 5, 1)-OOC for any nonnegative integer s whenever v is a product of primes congruent to 1 modulo 4. This improves the known existence results concerning optimal OOCs.
引用
收藏
页码:1848 / 1850
页数:3
相关论文
共 50 条
  • [1] A new class of optimal optical orthogonal codes with weight six
    Wang, Su
    Wang, Lingye
    Wang, Jinhua
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 61 - 64
  • [2] Constructions of optimal optical orthogonal codes with weight five
    Ma, SK
    Chang, YX
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (01) : 54 - 69
  • [3] New Optimal Variable-Weight Optical Orthogonal Codes
    Wu, Dianhua
    Cao, Jiayun
    Fan, Pingzhi
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 102 - 112
  • [4] The combinatorial construction for a class of optimal optical orthogonal codes
    Tang Yu
    Yin Jianxing
    Science in China Series A: Mathematics, 2002, 45 (10): : 1268 - 1275
  • [5] The combinatorial construction for a class of optimal optical orthogonal codes
    唐煜
    殷剑兴
    ScienceinChina,SerA., 2002, Ser.A.2002 (10) : 1268 - 1275
  • [6] The combinatorial construction for a class of optimal optical orthogonal codes
    Tang, Y
    Yin, JX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (10): : 1268 - 1275
  • [7] The combinatorial construction for a class of optimal optical orthogonal codes
    唐煜
    殷剑兴
    Science China Mathematics, 2002, (10) : 1268 - 1275
  • [8] Three New Families of Optimal Variable-Weight Optical Orthogonal Codes
    Chung, Jin-Ho
    Yang, Kyeongcheol
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1546 - 1550
  • [9] Combinatorial constructions of optimal optical orthogonal codes with weight 4
    Chang, YX
    Fuji-Hara, R
    Miao, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) : 1283 - 1292
  • [10] Constructions of Optimal Variable-Weight Optical Orthogonal Codes
    Zhao, Hengming
    Wu, Dianhua
    Fan, Pingzhi
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (04) : 274 - 291