Numerical Evaluation of the Gauss Hypergeometric Function with the hypergeo Package

被引:0
|
作者
Hankin, Robin K. S. [1 ]
机构
[1] Auckland Univ Technol, Hamilton, New Zealand
来源
R JOURNAL | 2015年 / 7卷 / 02期
关键词
ANALYTIC CONTINUATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces the hypergeo package of R routines for numerical calculation of hypergeometric functions. The package is focussed on efficient and accurate evaluation of the Gauss hypergeometric function over the whole of the complex plane within the constraints of fixed-precision arithmetic. The hypergeometric series is convergent only within the unit circle, so analytic continuation must be used to define the function outside the unit circle. This short document outlines the numerical and conceptual methods used in the package; and justifies the package philosophy, which is to maintain transparent and verifiable links between the software and Abramowitz and Stegun (1965). Most of the package functionality is accessed via the single function hypergeo(), which dispatches to one of several methods depending on the value of its arguments. The package is demonstrated in the context of game theory.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [31] Numerical evaluation of Appell's F1 hypergeometric function
    Colavecchia, FD
    Gasaneo, G
    Miraglia, JE
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 138 (01) : 29 - 43
  • [32] NUMERICAL EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTION FOR COMPLEX ARGUMENTS OF LARGE MAGNITUDES
    NARDIN, M
    PERGER, WF
    BHALLA, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (02) : 193 - 200
  • [33] A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties
    Srivastava, Hari Mohan
    Tassaddiq, Asifa
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Khan, Ilyas
    MATHEMATICS, 2019, 7 (10)
  • [34] On Relationships Between Classical Pearson Distributions and Gauss Hypergeometric Function
    Masjed-Jamei, Mohammad
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (02) : 401 - 411
  • [35] On Relationships Between Classical Pearson Distributions and Gauss Hypergeometric Function
    Mohammad Masjed-Jamei
    Acta Applicandae Mathematicae, 2010, 109 : 401 - 411
  • [36] A Class of Double Integrals Involving Gauss's Hypergeometric Function
    Jun, S.
    Kilicman, A.
    Kim, I
    Rathie, A. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 473 - 489
  • [37] Hermite-Hadamard Inequalities Involving The Gauss Hypergeometric Function
    Sarikaya, Mehmet Zeki
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [38] On some new contiguous relations for the Gauss hypergeometric function with applications
    Rakha, Medhat A.
    Rathie, Arjun K.
    Chopra, Purnima
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 620 - 629
  • [39] Periods of Hodge cycles and special values of the Gauss' hypergeometric function
    Franco, Jorge Duque
    JOURNAL OF NUMBER THEORY, 2022, 238 : 221 - 252
  • [40] A simplification of Laplace's method: Applications to the Gamma function and Gauss hypergeometric function
    Lopez, Jose L.
    Pagola, Pedro
    Perez Sinusia, E.
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 280 - 291