Numerical Evaluation of the Gauss Hypergeometric Function with the hypergeo Package

被引:0
|
作者
Hankin, Robin K. S. [1 ]
机构
[1] Auckland Univ Technol, Hamilton, New Zealand
来源
R JOURNAL | 2015年 / 7卷 / 02期
关键词
ANALYTIC CONTINUATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces the hypergeo package of R routines for numerical calculation of hypergeometric functions. The package is focussed on efficient and accurate evaluation of the Gauss hypergeometric function over the whole of the complex plane within the constraints of fixed-precision arithmetic. The hypergeometric series is convergent only within the unit circle, so analytic continuation must be used to define the function outside the unit circle. This short document outlines the numerical and conceptual methods used in the package; and justifies the package philosophy, which is to maintain transparent and verifiable links between the software and Abramowitz and Stegun (1965). Most of the package functionality is accessed via the single function hypergeo(), which dispatches to one of several methods depending on the value of its arguments. The package is demonstrated in the context of game theory.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [41] Analytical solutions and a numerical algorithm for the gauss's hypergeometric function 2F1(a,c;z)
    Mayrhofer, K.
    Fischer, F.D.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, 1994, 74 (07):
  • [42] UNIFIED PROBABILITY DENSITY FUNCTION INVOLVING T-CONFLUENT HYPERGEOMETRIC FUNCTION AND T-GAUSS HYPERGEOMETRIC FUNCTIONS
    Agarwal, Vinita
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2024, 23 (1-2): : 63 - 71
  • [43] ON THE EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTION
    SLATER, LJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (04): : 612 - 622
  • [44] On some new inequalities and fractional kinetic equations associated with extended gauss hypergeometric and confluent hypergeometric function
    Chandola, Ankita
    Pandey, Rupakshi Mishra
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2023, 15 (01):
  • [45] Integral Inequalities Associated with Gauss Hypergeometric Function Fractional Integral Operators
    R. K. Saxena
    S. D. Purohit
    Dinesh Kumar
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 27 - 31
  • [46] Integral Inequalities Associated with Gauss Hypergeometric Function Fractional Integral Operators
    Saxena, R. K.
    Purohit, S. D.
    Kumar, Dinesh
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 27 - 31
  • [47] Uniform convergent expansions of the Gauss hypergeometric function in terms of elementary functions
    Ferreira, Chelo
    Lopez, Jose L.
    Perez Sinusia, Ester
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (12) : 942 - 954
  • [48] CERTAIN RESULTS ON EXTENDED GENERALIZED tau-GAUSS HYPERGEOMETRIC FUNCTION
    Kumar, Dinesh
    Gupta, Rajeev Kumar
    Shaktawat, Bhupender Singh
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (04): : 739 - 752
  • [49] A note on two new integral representations of the Gauss hypergeometric function with an application
    Chammam, Wathek
    Rathie, Arjun K.
    Khlifi, Mongia
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2024, 31 (03) : 336 - 340
  • [50] The Gauss hypergeometric function F(a, b; c; z) for large c
    Ferreira, Chelo
    Lopez, Jose L.
    Sinusia, Ester Perez
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (02) : 568 - 577