A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties

被引:11
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ]
Tassaddiq, Asifa [4 ]
Rahman, Gauhar [5 ]
Nisar, Kottakkaran Sooppy [6 ]
Khan, Ilyas [7 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Majmaah Univ, Coll Comp & Informat Sci, Al Majmaah 11952, Saudi Arabia
[5] Shaheed Benazir Bhutto Univ, Dept Math, Sheringal 18000, Upper Dir, Pakistan
[6] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[7] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
关键词
gamma function and its extension; Pochhammer symbol and its extensions; hypergeometric function and its extensions; tau-Gauss hypergeometric function and its extensions; tau-Kummer hypergeometric function; Fox-Wright function; POCHHAMMER SYMBOL; GAMMA;
D O I
10.3390/math7100996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define an extended version of the Pochhammer symbol and then introduce the corresponding extension of the tau-Gauss hypergeometric function. The basic properties of the extended tau-Gauss hypergeometric function, including integral and derivative formulas involving the Mellin transform and the operators of fractional calculus, are derived. We also consider some new and known results as consequences of our proposed extension of the tau-Gauss hypergeometric function.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
    Yadav, Komal Singh
    Sharan, Bhagwat
    Verma, Ashish
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024,
  • [2] New series expansions of the Gauss hypergeometric function
    Lopez, Jose L.
    Temme, Nico M.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 39 (02) : 349 - 365
  • [3] New series expansions of the Gauss hypergeometric function
    José L. López
    Nico M. Temme
    Advances in Computational Mathematics, 2013, 39 : 349 - 365
  • [4] Gauss' hypergeometric function
    Beukers, Frits
    ARITHMETIC AND GEOMETRY AROUND HYPERGEOMETRIC FUNCTIONS, 2007, 260 : 23 - 42
  • [5] On some new inequalities and fractional kinetic equations associated with extended gauss hypergeometric and confluent hypergeometric function
    Chandola, Ankita
    Pandey, Rupakshi Mishra
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2023, 15 (01):
  • [6] A new extension of Srivastava's triple hypergeometric functions and their associated properties
    Saboor, Abdus
    Rahman, Gauhar
    Anjum, Zunaira
    Nisar, Kottakkaran Sooppy
    Araci, Serkan
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2021, 41 (01): : 13 - 24
  • [7] ON THE EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION
    KALLA, SL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (06): : 35 - 36
  • [8] ON THE GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION
    Virchenko, N. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2008, (01): : 154 - 156
  • [9] Arithmetic properties of mirror maps associated with Gauss hypergeometric equations
    Julien Roques
    Monatshefte für Mathematik, 2013, 171 : 241 - 253
  • [10] Arithmetic properties of mirror maps associated with Gauss hypergeometric equations
    Roques, Julien
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (02): : 241 - 253