TRIANGULAR NUMBERS AND GENERALIZED FIBONACCI POLYNOMIAL

被引:0
|
作者
Sahin, Adem [1 ]
机构
[1] Tokat Gaziosmanpasa Univ, Fac Educ, Dept Math & Sci Educ, TR-60250 Tokat, Turkey
关键词
Alternating triangular numbers; triangular numbers; generalized Fibonacci polynomials;
D O I
10.1515/ms-2022-0099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study triangular numbers. We focus on the linear homogeneous recurrence relation of degree 3 with constant coefficients for triangular numbers. Then we deal with the relationship between generalized Fibonacci polynomials and triangular numbers. We show that different properties of triangular numbers can be obtained by using this relationship. Finally, we examine the properties of the sequence A052529 that has strong relationships with triangular numbers. (c) 2022 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1463 / 1470
页数:8
相关论文
共 50 条
  • [21] GENERALIZED GAUSSIAN FIBONACCI NUMBERS
    PETHE, S
    HORADAM, AF
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (01) : 37 - 48
  • [22] Generalized Fibonacci Numbers and Applications
    Agaian, Sarkis
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3484 - 3488
  • [23] On Generalized Fibospinomials: Generalized Fibonacci Polynomial Spinors
    Colak, Ece Guelsah
    Bilgin, Nazmiye Gonul
    Soykan, Yuksel
    SYMMETRY-BASEL, 2024, 16 (06):
  • [24] FORMULA FOR FIBONACCI NUMBERS FROM A NEW APPROACH TO GENERALIZED FIBONACCI NUMBERS
    BERNSTEIN, L
    FIBONACCI QUARTERLY, 1976, 14 (04): : 358 - 368
  • [25] GENERALIZED FIBONACCI SEQUENCES AND THE TRIANGULAR MAP
    LIN, CL
    CHINESE JOURNAL OF PHYSICS, 1994, 32 (05) : 467 - 477
  • [26] Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers
    Wloch, Andrzej
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) : 5564 - 5568
  • [27] On Hyperbolic Numbers With Generalized Fibonacci Numbers Components
    Soykan, Yuksel
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 987 - 1004
  • [28] 103.28 On a link between Triangular and Fibonacci numbers
    Subramaniam, K. B.
    MATHEMATICAL GAZETTE, 2019, 103 (558): : 489 - 489
  • [29] On the arguments of the roots of the generalized Fibonacci polynomial
    Alahmadi, Adel
    Klurman, Oleksiy
    Luca, Florian
    Shoaib, Hatoon
    LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (03) : 249 - 253
  • [30] On the arguments of the roots of the generalized Fibonacci polynomial
    Adel Alahmadi
    Oleksiy Klurman
    Florian Luca
    Hatoon Shoaib
    Lithuanian Mathematical Journal, 2023, 63 : 249 - 253