On the arguments of the roots of the generalized Fibonacci polynomial

被引:2
|
作者
Alahmadi, Adel [1 ]
Klurman, Oleksiy [2 ]
Luca, Florian [3 ,4 ]
Shoaib, Hatoon [1 ]
机构
[1] King Abdulaziz Univ, Res Grp Algebra Struct & Its Applicat, POB 80200, Jeddah 21589, Saudi Arabia
[2] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[3] Univ Witwatersrand, Sch Maths, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa
[4] UNAM, Ctr Ciencias Matemat, Morelia, Mexico
关键词
zeros of generalized Fibonacci polynomials; ZEROS;
D O I
10.1007/s10986-023-09604-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the classical subject of equidistribution of the roots of Littlewood-type polynomials. More precisely, we show that the roots of the family of polynomials & psi;(k)(z) = z(k)-z(k-1)-MIDLINE HORIZONTAL ELLIPSIS-1, k & GT; 1, are uniformly distributed around the unit circle in the strong quantitative form, confirming a conjecture from [C.-A. Gomez and F. Luca, Commentat. Math. Univ. Carol., On the distribution of roots of z(k) - z(k-1)-MIDLINE HORIZONTAL ELLIPSIS-z - 1, 62(3):291-296, 2021].
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [1] On the arguments of the roots of the generalized Fibonacci polynomial
    Adel Alahmadi
    Oleksiy Klurman
    Florian Luca
    Hatoon Shoaib
    Lithuanian Mathematical Journal, 2023, 63 : 249 - 253
  • [2] On the separation of the roots of the generalized Fibonacci polynomial
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02): : 269 - 281
  • [3] Generalized Fibonacci polynomial of graph
    Wloch, I
    ARS COMBINATORIA, 2003, 68 : 49 - 55
  • [4] Identities for the generalized Fibonacci polynomial
    Flórez, Rigoberto
    McAnally, Nathan
    Mukherjee, Antara
    arXiv, 2017,
  • [5] On Generalized Fibospinomials: Generalized Fibonacci Polynomial Spinors
    Colak, Ece Guelsah
    Bilgin, Nazmiye Gonul
    Soykan, Yuksel
    SYMMETRY-BASEL, 2024, 16 (06):
  • [6] TRIANGULAR NUMBERS AND GENERALIZED FIBONACCI POLYNOMIAL
    Sahin, Adem
    MATHEMATICA SLOVACA, 2022, 72 (06) : 1463 - 1470
  • [7] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL
    Luca, Florian
    FIBONACCI QUARTERLY, 2021, 59 (04): : 298 - 307
  • [8] A note on the coefficient array of a generalized Fibonacci polynomial
    Shannon, A. G.
    Deveci, Omur
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) : 206 - 212
  • [9] Conditions for the existence of generalized Fibonacci primitive roots
    Li, HC
    FIBONACCI QUARTERLY, 2000, 38 (03): : 244 - 249
  • [10] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL, II
    Luca, Florian
    FIBONACCI QUARTERLY, 2024, 62 (03): : 193 - 200