TRIANGULAR NUMBERS AND GENERALIZED FIBONACCI POLYNOMIAL

被引:0
|
作者
Sahin, Adem [1 ]
机构
[1] Tokat Gaziosmanpasa Univ, Fac Educ, Dept Math & Sci Educ, TR-60250 Tokat, Turkey
关键词
Alternating triangular numbers; triangular numbers; generalized Fibonacci polynomials;
D O I
10.1515/ms-2022-0099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study triangular numbers. We focus on the linear homogeneous recurrence relation of degree 3 with constant coefficients for triangular numbers. Then we deal with the relationship between generalized Fibonacci polynomials and triangular numbers. We show that different properties of triangular numbers can be obtained by using this relationship. Finally, we examine the properties of the sequence A052529 that has strong relationships with triangular numbers. (c) 2022 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1463 / 1470
页数:8
相关论文
共 50 条
  • [31] On the separation of the roots of the generalized Fibonacci polynomial
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02): : 269 - 281
  • [32] TRIANGULAR AND SQUARE TRIANGULAR NUMBERS INVOLVING GENERALIZED PELL NUMBERS
    Ozkoc, Arzu
    Tekcan, Ahmet
    Gozeri, Gul Karadeniz
    UTILITAS MATHEMATICA, 2017, 102 : 231 - 254
  • [33] GENERALIZED FIBONACCI NUMBERS AS ELEMENTS OF IDEALS
    SHANNON, AG
    FIBONACCI QUARTERLY, 1979, 17 (04): : 347 - 349
  • [34] On Generalized Fibonacci Polynomials and Bernoulli Numbers
    Zhang, Tianping
    Ma, Yuankui
    JOURNAL OF INTEGER SEQUENCES, 2005, 8 (05)
  • [35] On the Sums of Reciprocal Generalized Fibonacci Numbers
    Kuhapatanakul, Kantaphon
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (07)
  • [36] GENERALIZED FIBONACCI NUMBERS WITH FIVE PARAMETERS
    Tasyurdu, Yasemin
    THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S495 - S505
  • [37] The generalized Fibonacci numbers of order k
    Bobrovskiy, V. P.
    Bukharitsyna, L., V
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2012, 66 (02): : 40 - 49
  • [38] AITKEN SEQUENCES AND GENERALIZED FIBONACCI NUMBERS
    MCCABE, JH
    PHILLIPS, GM
    MATHEMATICS OF COMPUTATION, 1985, 45 (172) : 553 - 558
  • [39] Generalized q-Fibonacci numbers
    Munarini, E
    FIBONACCI QUARTERLY, 2005, 43 (03): : 234 - 242
  • [40] On dual hyperbolic generalized Fibonacci numbers
    Soykan, Yuksel
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 62 - 78