On the integrability of 2D Hamiltonian systems with variable Gaussian curvature

被引:11
|
作者
Elmandouh, A. A. [1 ,2 ]
机构
[1] King Faisal Univ, Dept Math & Stat, Fac Sci, POB 400, Al Ahsaa 31982, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
Liouville integrability; Differential Galois theory; Systems in polar coordinates; ATWOOD MACHINE; NONEXISTENCE; INTEGRALS; MOTION;
D O I
10.1007/s11071-018-4237-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we consider the integrability of a general 2D motion of a particle on a surface with variable Gaussian curvature under the influence of conservative potential forces. Although this system has a kinetic energy relying on the coordinates, it remains homogeneous. The homogeneity of the system generally enables us to find a particular solution that can be utilized to derive the necessary conditions for the integrability by studying the properties of the differential Galois group of the normal variational equations along this particular solution. We present a new theory that can be applied to determine the necessary conditions for the integrability of Hamiltonian systems having a variable Gaussian curvature.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [41] Open Problem 3: On the Integrability of Hamiltonian Systems
    Simo, Carles
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2015, 14 (02) : 409 - 409
  • [42] THE COMPLETE-INTEGRABILITY OF HAMILTONIAN-SYSTEMS
    VANMOERBEKE, P
    LECTURE NOTES IN MATHEMATICS, 1983, 1017 : 462 - 475
  • [43] Interactions and integrability in weakly monitored Hamiltonian systems
    Xing, Bo
    Turkeshi, Xhek
    Schiro, Marco
    Fazio, Rosario
    Poletti, Dario
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [44] Analytic integrability of Hamiltonian systems with exceptional potentials
    Llibre, Jaume
    Valls, Claudia
    PHYSICS LETTERS A, 2015, 379 (38) : 2295 - 2299
  • [45] POLYNOMIAL AND RATIONAL INTEGRABILITY OF POLYNOMIAL HAMILTONIAN SYSTEMS
    Llibre, Jaume
    Stoica, Cristina
    Valls, Claudia
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [46] Extended Integrability and Bi-Hamiltonian Systems
    Oleg I. Bogoyavlenskij
    Communications in Mathematical Physics, 1998, 196 : 19 - 51
  • [47] Open Problem 3: On the Integrability of Hamiltonian Systems
    Carles Simó
    Qualitative Theory of Dynamical Systems, 2015, 14 : 409 - 409
  • [48] Renormalization group equations and integrability in Hamiltonian systems
    Yamaguchi, YY
    Nambu, Y
    PROGRESS OF THEORETICAL PHYSICS, 1998, 100 (01): : 199 - 204
  • [49] Partial integrability of Hamiltonian systems with homogeneous potential
    A. J. Maciejewski
    M. Przybylska
    Regular and Chaotic Dynamics, 2010, 15 : 551 - 563
  • [50] Partial Integrability of Hamiltonian Systems with Homogeneous Potential
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (4-5): : 551 - 563