Analytic integrability of Hamiltonian systems with exceptional potentials

被引:1
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
关键词
Hamiltonian system with 2 degrees of freedom; Homogeneous potentials of degree k; Exceptional potentials; Integrability; VARIATIONAL EQUATIONS;
D O I
10.1016/j.physleta.2015.07.034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the existence of analytic first integrals of the complex Hamiltonian systems of the form H = 1/2 Sigma(2)(i=1) p(i)(2) + V-l(q(1),q(2)) with the homogeneous polynomial potential V-l(q(1), q(2)) = alpha(q(2) - iq(1))(l)(q(2) +iq(1))(k-l), l = 0, ..., k, alpha is an element of C\ {0} of degree k called exceptional potentials. In Remark 2.1 of Ref. [7] the authors state: The exceptional potentials V-0, V-1, Vk-1, V-k and V-k/2 when k is even are integrable with a second polynomial first integral. However nothing is known about the integrability of the remaining exceptional potentials. Here we prove that the exceptional potentials with k even different from V-0, V-1, Vk-1, V-k and V-k/2, have no independent analytic first integral different from the Hamiltonian one. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2295 / 2299
页数:5
相关论文
共 50 条
  • [1] Integrability of Hamiltonian systems with algebraic potentials
    Maciejewski, Andrzej J.
    Przybylska, Maria
    PHYSICS LETTERS A, 2016, 380 (1-2) : 76 - 82
  • [2] JORDAN OBSTRUCTION TO THE INTEGRABILITY OF HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS
    Duval, Guillaume
    Maciejewski, Andrzej J.
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (07) : 2839 - 2890
  • [3] Integrability of Hamiltonian systems with homogeneous potentials of degree zero
    Casale, Guy
    Duval, Guillaume
    Maciejewski, Andrzej J.
    Przybylska, Maria
    PHYSICS LETTERS A, 2010, 374 (03) : 448 - 452
  • [4] ANALYTIC INTEGRABILITY FOR A CLASS OF CONE POTENTIAL HAMILTONIAN-SYSTEMS
    MOAURO, V
    NEGRINI, P
    OLIVA, WM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) : 61 - 70
  • [5] Polynomial integrability of Hamiltonian systems with homogeneous potentials of degree -k
    Oliveira, Regilene
    Valls, Claudia
    PHYSICS LETTERS A, 2016, 380 (46) : 3876 - 3880
  • [6] On the analytic integrability of the cored galactic Hamiltonian
    Llibre, Jaurne
    Valls, Claudia
    APPLIED MATHEMATICS LETTERS, 2014, 33 : 35 - 39
  • [7] Analytic integrability of Hamiltonian systems with a homogeneous polynomial potential of degree 4
    Llibre, Jaume
    Mahdi, Adam
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (01)
  • [8] MEROMORPHIC INTEGRABILITY OF THE HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS OF DEGREE-4
    Llibre, Jaume
    Tian, Yuzhou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4305 - 4316
  • [9] Darboux points and integrability analysis of Hamiltonian systems with homogeneous rational potentials
    Studzinski, Michal
    Przybylska, Maria
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 249 : 1 - 15
  • [10] Analytic-non-integrability of an integrable analytic Hamiltonian system
    Gorni, G
    Zampieri, G
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (03) : 287 - 296